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Abstract 

We evaluated event-related potentials (ERP) as indices of performance in three visual 
display-monitoring tasks: (a) signal detection, (b) running memory and (c) computation. 
Using factor analysis, we developed a global measure of performance (PFl) for each task. 
Task-relevant and irrelevant-probe stimuli elicited ERPs, which included components Pl, Nl, 
P2, P300, slow waves, and fronto-central negativities. In tasks (a) and (b), P300 amplitude in 
the task-relevant ERPs increased when the task was engaged, and was greater for accurate- 
than for inaccurate-response trials. In tasks (a) and (c), the irrelevant-probe ERPs also dif- 
fered among task and performance conditions. To relate ERP measures to PFl, we developed 
linear regression models distinguished by three factors: general versus individual-subject, 
stimulus relevance, and signal-to-noise ratio (SNR). Model accuracy and reliability were 
highest for individual-subject, relevant-stimulus and high-SNR models, where average R2 

values for the three tasks were 0.44, 0.46, and 0.38, respectively. We discuss implications of 
the models for performance monitoring and implications of the ERP effects for human infor- 
mation processing. 

Keywords: Event-related potentials; Display-monitoring; Performance; Stimulus relevance; 
Signal-to-noise ratio 

1. Introduction 

In many important tasks performed by human operators, performance quality 
varies over time, often falling below acceptable limits. Parasuraman (1986), sum- 
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marizing the results of 20 human performance studies involving operational inspec- 
tion and monitoring tasks, found that operators missed a disturbingly large fraction 
of signals in many tasks. Across tasks, the average percentage of missed signals 
exceeded 30%. Increases in workload or task difficulty may increase the likelihood 
of human error. For example, in a CRT-monitoring task, Jerison & Pickett (1964) 
found that the percentage of missed signals increased from 10% at an event rate of 
five per minute to about 70% at an event rate of 30 per minute. 

Such performance variability may have serious consequences. For example, a 
missed or misclassified signal on an air traffic controller’s display could result in an 
aircraft collision. Other important tasks affected by human performance variability 
include defense (radar, sonar, electronic warfare), communications, power plant 
operations and piloting of vehicles. In many of these tasks, the likelihood of such 
errors could be reduced if real-time indices of performance quality were available. 

Although the performance of a trained operator depends strongly on task vari- 
ables such as the information rate and signal-to-noise ratio (SNR) of task-relevant 
stimuli, psychological constructs such as perceptual, cognitive and motor processes 
are also important. An indication of these processes is provided by brain event- 
related potentials (ERP). ERPs reflect mental processes and are known to be related 
to human performance, including signal detection, confidence ratings, target identi- 
fication and recognition, memory, tracking and mental computation (Hillyard, 
Squires, Bauer & Lindsay, 1971; Kok & DeJong, 1980; Kramer, Wickens, Vanasse, 
Heffley & Donchin, 1981; Parasuraman & Beatty, 1980; Parasuraman, Richer & 
Beatty, 1982; Ruchkin, Johnson, Mahaffey 8c Sutton, 1988). The aim of this study 
was to evaluate the utility and reliability of real-time inferences about display- 
monitoring performance that may be made using ERPs. To assess the generality of 
ERP-performance relationships, we evaluated tasks that presented three different 
classes of demands on the subjects: signal detection, running memory and mental 
computation. 

Practical interest in ERPs stems from concepts, models, and experimental data 
that explain variation in human performance in terms of internal constraints, 
mechanisms and physiological states. Broadbent (1970) proposed the concept of lim- 
ited capacity, which constrains the quality of performance in resource-limited tasks 
(Norman & Bobrow, 1975). For a given task environment, capacity may be thought 
of as one or more pools of specific resources available to meet task demands 
(Wickens, 1984). This concept of limited capacity is useful for interpreting relation- 
ships between ERPs and performance. In dual-task paradigms, division of resources 
among the tasks leads to performance trade-offs, which are indexed by ERP com- 
ponents such as the P300 (Blankenship, Trejo & Lewis, 1988a; Hoffman, Simons & 
Houck, 1983; Israel, Chesney, Wickens & Donchin, 1980). Furthermore, the P300 
is selectively sensitive to perceptual/cognitive demands. (Donchin, Kramer, & 
Wickens, 1986). Many other studies (reviewed by Gopher & Donchin, 1986; Kramer, 
1990; Parasuraman, 1990) have also reported relationships between ERP com- 
ponents and performance. 

ERPs are often elicited by task relevant or secondary task probes. However, ERPs 
elicited by task-irrelevant probes have also been successfully used as indices of pro- 
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cessing demands in humans and animals (Defayolle, Dinand & Gentil, 1971; Garcia- 
Austt, Bogacacz & Vanzulli, 1964; Kramer, Trejo & Humphrey, in press; Oatman, 
1971; Papanicolaou & Johnstone, 1984). In an example relevant to the present study, 
root-mean-square ERP amplitude over fronto-central areas with a latency of 
330 f 25 ms for a random irrelevant visual-flash stimulus was about 40% lower 
when subjects performed a complex radar simulation than during a passive baseline 
period (Trejo, Lewis & Blankenship, 1987). In addition, active-baseline differences 
in probe ERP amplitude were correlated with performance levels in the task (Trejo, 
Lewis & Blankenship, 1990). A replication of these effects (Blankenship, Trejo & 
Lewis, 1988b) with an active baseline control condition indicated that the differences 
between baseline and simulation irrelevant-probe ERP amplitudes were not 
response-related. 

Attention is also associated with a set of specific ERP effects that bear on the qual- 
ity of performance. Firstly, efficient task performance requires selective attention to 
task-relevant events and inattention to extraneous stimuli, such as probes. Attention 
to relevant stimuli, either spatial or non-spatial, amplifies a range of ERP com- 
ponents, including Pl, Nl, P2 and N2 as well as slower, broad negativity of latency 
150-300 ms (Eason, Harter & White, 1969; Harter & Aine, 1984; Van Voorhis & 
Hillyard, 1977). With limited capacity, any attention to probe stimuli should detract 
from primary task performance and enhance components of the probe ERP. Probe 
stimuli may also reflect allocation of resources in preattentive sensory mechanisms. 
In hearing, such a mechanism can be demonstrated in experiments where attention 
is directed to one train of stimuli (say in one ear) and withheld from another train 
in which a few deviant stimuli occur (Naatanen, 1982). The deviant stimuli produce 
a small P300 (the P3a) with a shorter latency and more frontal distribution than that 
observed for attended stimuli (Squires, Squires & Hillyard, 1975). The P3a is preced- 
ed by the N2b, a negativity of latency 180-220 ms. The occurrence of the N2b-P3a 
has been suggested to indicate the activation of preattentive mechanisms sensitive to 
differences among unattended stimuli. 

The approach we took in this study was to record ERPs elicited concurrently by 
task-relevant stimuli and irrelevant-probe stimuli in three different tasks. The goal 
of the study was to determine for each stimulus type the quantitative relationship 
between variations in the amplitude and latency of ERP components and perfor- 
mance on the tasks across subjects as well as for individual subjects. To this end, 
we manipulated the difficulty of the task relevant stimuli so as to produce variations 
in performance. In the signal detection task, difficulty was varied by lowering the 
contrast of targets presented on a CRT. In the running memory task, difficulty was 
varied by increasing the number of intervening stimuli between a cue and a target 
in a delayed letter-matching task. In the computation task, difficulty was varied by 
increasing the empirically measured complexity of mental division problems. In all 
tasks, a single global measure of performance was derived using factor analysis of 
the group multivariate performance data (e.g., measures of reaction time, accuracy, 
confidence) and validated using factor analyses of the individual subjects’ perfor- 
mance data. 

We examined the relationships between ERP components and performance at two 
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levels of ERP SNR. At the single-trial level, stepwise linear regression models were 
fitted to the single-trial performance data using ERP component amplitudes and 
latencies from single-trial ERPs. At a higher SNR level, stepwise linear regression 
models were fitted to IO-trial running means of the performance data using IO-trial 
running means of the ERP component amplitudes and latencies. Across tasks and 
levels of ERP SNR, ERP components for both relevant and irrelevant stimuli were 
significantly related to task performance by the linear regression models. However, 
the models based on running means of the ERP components and the performance 
data were much more accurate and reliable than the models based on single-trial 
data. In addition, models based on estimates of relevant-stimulus ERP components 
were much more accurate and reliable than the models based on irrelevant-probe 
ERP components. For these reasons, this paper will focus on the analyses of the 
running-mean ERPs elicited by the task-relevant stimuli and only briefly discuss the 
single-trial and irrelevant-probe based ERP data. Some interesting differences in 
model accuracy and reliability were also observed between the regression models for 
different tasks. 

2. Method 

2.1. Subjects 

The subjects were eight right-handed male volunteers from the U.S. Navy ranging 
in age between 19 and 44 years. Each subject’s vision was tested prior to experimen- 
tation. Corrective lenses were worn as required for visual acuity of 20/20 or better. 
Each subject had training or experience relevant to visual display monitoring tasks 
(radar, sonar, or electronic warfare). Questionnaire results indicated that none of the 
subjects had experienced head trauma, dizziness, fainting, or equilibrium problems. 
With the exception of coffee, cigarettes, and sodas, none of the subjects had taken 
any medication or drug in the 24 h preceding test sessions. 

2.2. General Aspects of Tasks 

The subjects performed three tasks: signal detection, running memory with letters, 
and computation (mental arithmetic). In each task a computer presented transient 
visual stimuli in discrete trials that required immediate responses. Trials were paced 
by the computer and the difficulty levels for correct processing of the stimuli were 
quantized at different levels in each task. These levels were scaled in a pilot study 
to yield measurably different error rates. 

Each subject was seated in front of a 19-in color CRT display at a fixed viewing 
distance of 50 cm. The subject’s head was stabilized to prevent movement by using 
a combined chin rest and head support. Eye fixation was monitored with an infrared 
closed-circuit television eye tracker/pupillometer system. Testing was performed in 
a quiet, electrically shielded room, and to prevent auditory distractions, the subject 
wore headphones and listened to white noise of 70 dB SPL. Ambient room illumina- 
tion was 0.5 footcandle. 
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In all tasks, the display background was a neutral gray matched to the D6500 stan- 
dard (Wyszecki & Stiles, 1982) with a luminance of 6.25 ft-L. A central crosshair and 
two white concentric rings (resembling radar range rings) were continuously 
displayed at a contrast of 66%. The distance between the center of the crosshair and 
the inner ring subtended 2 degrees of visual angle. The distance between the center 
of the crosshair and the outer ring subtended 4 degrees. Individual symbols (letters, 
digits, radar tracking symbols) subtended 42 min of arc. Symbol contrast and loca- 
tion were task-dependent (see below). 

Performance was continuous within blocks ranging from 2.55-3.67 min in dura- 
tion. Each block consisted of 50 or 72 trials of duration 2.1 s separated by a random- 
ly varying intertrial interval with a mean duration of 955 ms and a range of 525- 1384 
ms. Task-relevant stimulus duration was 50 ms for the signal detection task and 200 
ms for the other tasks. The interval between relevant stimuli had a mean of 3055 ms 
and a range of 2626 to 3484 ms. 

Each task-relevant stimulus was followed by one of two irrelevant stimuli (probes) 
within the same trial. These probes consisted of an abrupt color change of the entire 
display background for a duration of 50 ms. The range rings and cross hair on the 
display remained visible. Frequent probes were white flashes occurring on 80% of 
the trials. Rare probes were green flashes occurring on 20% of the trials. The 
luminance of both flashes was 12.4 ft-L, or 0.3 log units higher than the background. 
The sequence of rare and frequent probes was randomized with the constraint that 
rare flashes could not occur consecutively. The interval between relevant and irrele- 
vant stimuli varied uniformly around a mean of 1000 ms with a range of 526- 1576 
ms. 

Subjects performed each task in three sessions held on separate days. The first ses- 
sion consisted of training, which familiarized the subjects with the tasks and served 
to stabilize mean reaction times (RT) and error rates. The stability criterion was less 
than a 10% change in performance across three consecutive blocks of trials. This 
typically required 8-14 blocks of trials. The second and third sessions were test 
sessions. 

Each test session included one baseline block of trials, in which subjects observed 
the display without making any responses. In baseline blocks, the correct responses 
were undefined. The display and the stimuli used for the baseline condition were 
identical to those used for testing. However, only before testing blocks were subjects 
instructed how to respond. For detection responses, subjects used their right index 
and middle fingers to press telegraph keys labeled T and NT for target and nontarget 
stimuli. Detection responses were allowed any time up to 1800 ms after relevant stim- 
ulus onset but typically occurred no earlier than 250 ms. The computer recorded RT 
for these responses with a precision of 1 ms. Subjects used a three-button computer 
mouse with the left hand to signal other responses (confidence ratings, mental arith- 
metic) when required. Mouse-button responses were allowed any time up to the 
beginning of the next trial but the response times were not recorded. 

At least nine blocks of trials were presented during each test session (one baseline 
block and eight test blocks), yielding at least 400 test trials plus 50 baseline trials per 
session. Target stimuli were variably mapped to responses in a manner that called 
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for controlled processing of the detection responses. The target/nontarget ratio was 
always 50/50 and the sequence was randomized. For all tasks, subjects were 
instructed to respond as quickly as possible without sacrificing accuracy. 

2.3. Signal Detection Task 

The display, input device configuration, symbols for task-relevant stimuli, and 
variable mapping strategy for the signal detection task are shown in Fig. 1. In each 
block of trials, a pair of triangles, with apexes either both up or both down, were 
presented at three different contrast levels: easy = 0.17, medium = 0.43, and 
hard = 0.53. Half the triangles of each contrast contained a small dot in the center, 
which subtended 4 min of arc. On each trial, the computer presented one of the six 
triangles for 50 ms at one of eight preset positions just outside the inner range ring. 
These positions correspond to radar bearing angles of 0, 45, 90, 135, 180, 225, 270 
and 315 degrees or, equivalently, to four visual axes: horizontal, vertical, right 
oblique and left oblique. The sequence of triangles and positions was randomized 
and balanced within blocks. 

Two responses were required. The subject first responded to symbols by using the 
right index finger to press either the T key or the NT key. RT was measured only 

LW4 Symbols 

L M H 

Confidence Rating Detection Response 

Fig. I. Display, input device configuration, symbols for task relevant stimuli, and variable mapping strat- 

egy for the signal detection task. 
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for these detection responses. Immediately afterwards, the subject used the mouse 
with his left hand to provide a subjective three-point rating (low, medium, or high) 
of his confidence in the accuracy of his detection response. At the beginning of each 
block, the computer displayed a diagram to instruct the subject as to which set of 
triangles was the target set. In half the blocks, targets were the triangles with the dot. 
Triangles without the dot were targets in the other blocks. The association between 
dots and targets alternated on each successive block. Additionally, the orientation 
of the triangles (up or down) was alternated on each successive block. 

2.4. Running memory task 

The display, input device configuration, symbols for task-relevant stimuli, and 
variable mapping strategy for the running memory task are shown in Fig. 2. The rel- 
evant stimuli were six capital letters (B, F, H, J, N and X). As in the detection task, 
stimuli were presented parafoveally at one of eight bearing angles - however the 
stimulus duration was 200 ms. The stimuli were presented singly in a pseudo-random 
order. The objective of the task was to identify the match or mismatch of a letter 
that had just appeared on the screen with one that had appeared a number of trials 
back. The number of trials back that the subject had to remember ranged from one 

Level Sequence ( = target) 

l *m 

1 FHJJNBB... 

t t 

2 XNBNFJF... 

t t 

3 BNXBJXF... 

t t 

4 NFHNJFB... 

t 

Detection Response 

Fig. 2. Display, input device configuration, symbols for task relevant stimuli, and variable mapping strat- 

egy for the running memory task. 
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to four, depending on his ability, which was determined during training. Six subjects’ 
maximum difficulty level was three-back. One subject’s maximum level was four- 
back, and another was two-back. Subjects were tested at two adjacent difficulty 
levels: four blocks at an easy level (e.g., two-back) and four blocks at a difficult level 
(e.g., three-back). Only one response was required - the subject pressed T for a 
match or NT for a mismatch. Accuracy and RT were measured for each trial. The 
running memory task was the only one in which difficulty varied at the block level 
instead of the trial level, as in the other two tasks. 

2.5. Computation task 

The display, input device configuration, symbols for task-relevant stimuli, and 
variable mapping strategy for the computation task are shown in Fig. 3. The relevant 
stimuli were 15 pairs of numbers. On each trial a single pair was selected from a 
pseudo-random sequence and presented foveally for 200 ms in the form of a division 
problem. One number was above the other number, divided by a straight line. On 
half the trials the larger number was above the line, and on the other half, the larger 
number was below the line. Subjects were told how to respond at the beginning of 
each block. Each trial required two responses. The first was a detection response in 

LWCI Operands 

I 15/6,28/8, 

4418.4617 

2 18/7,24/l, 

3916, 4019, 

50/9,51/8 

3 21/8. 2916, 

32/9,3518, 

3817 

Block 

Mental Math Response DeCection Response 

Operands 

T NT 

Fig. 3. Display, input device configuration, symbols for task relevant stimuli, and variable mapping strat- 

egy for the computation task. 
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which the subject pressed T for target or NT for nontarget. Targets were defined by 
the configuration of the number pairs: on odd blocks, the targets were defined by 
larger numbers on top, and on even blocks targets were defined by larger numbers 
below. RT was measured only for the detection responses. In addition to the detec- 
tion response, subjects performed the division problem indicated by each number 
pair. They always had to divide the larger number by the smaller number (regardless 
of configuration) and report the remainder (always 3,4, or 5) by pressing the appro- 
priate button on the mouse. The three difficulty levels - easy, medium and hard, 
had four, six and five number pairs, respectively. The assignment of number pairs 
to difficulty levels was determined in pilot studies and from training data, and block- 
ed as shown in Fig. 3. 

2.6. Physiological recording 

During each trial the EEG was recorded for 2 s, from 200 ms before the task- 
relevant stimulus (pre-stimulus) to 1800 ms afterward (post-stimulus). The EEG elec- 
trode sites were Fz, C3, C4, Cz, Pz, 01,02 and the right mastoid or A2 (Internation- 
al lo-20 system, Jasper, 1958). All electrodes were referred to the left mastoid, Al. 
Recording was performed with tin electrodes embedded in a nylon cap (Electra-Cap 
International, Inc.), Grass amplifiers (Grass Model 12A, Neurodata Acquisition 
System), and a computer programmed to digitize and record single EEG epochs on 
a hard disk. During recording the signals were amplified 20 000 times, low-pass 
filtered with a cut-off of 100 Hz, and sampled at 1000 Hz. 

The EOG was also recorded from two bipolar pairs of Ag-AgCl electrodes. One 
pair measured the vertical component between sites above and below the right eye. 
Another pair measured the horizontal component between sites that were about 2 
cm lateral to the outer canthus of each eye. 

2.7. Signal processing 

Off line, the EEG epochs were decimated to a sampling rate of 500 Hz and filtered 
with a zero-phase digital filter with a cutoff frequency of 51 Hz (0 dB at 43 Hz, -89 
dB at 60 Hz). The filtered epochs were then arithmetically re-referenced to average 
mastoids by synchronously subtracting half the amplitude of the A2-Al recordings 
from the recordings for each of the scalp electrodes. 

The re-referenced epochs were then corrected for artifacts produced by EOG blink 
and eye-movement potentials using a modification of the method described by Grat- 
ton, Coles, & Donchin (1983). The modification consisted of using the cross- 
correlation function between a half-cycle cosine blink template and the vertical EOG 
recordings to identify blink periods. Regions of the cross-correlation function that 
exceeded a threshold value of 0.3 corresponded to blinks, and were corrected with 
a separate propagation factor from other regions of the recording. Each single epoch 
was modeled as a linear sum of EEG, propagated blink potentials (when present), 
propagated non-blink vertical EOG potentials and propagated horizontal EOG 
potentials. A multiple linear regression procedure estimated the contributions of the 
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three artifact sources, which were then subtracted. Unlike the Gratton et al. (1983) 
procedure, no correction for average ERP propagation into the EOG recordings was 
applied. Effects of EOG correction were assessed by comparing average ERPs 
created from EOG-corrected epochs with average ERPs created from epochs free of 
any EOG artifacts greater than 50 PV relative to the median pre-stimulus voltage. 
No attenuation or distortion of ERP components due to the correction procedure 
was observed. 

Each processed single epoch was displayed on a computer screen in a multi- 
electrode format and scored for remaining artifacts by trained observers. Such 
artifacts included amplifier saturation, electrode pops, large muscle or EKG activity, 
and the occurrence of eye movements or blinks during the presentation of the 
relevant or irrelevant stimuli. A 50-PV criterion, relative to the median pre-stimulus 
amplitude, was used to reject spuriously large voltages. Only single epochs that were 
free of discernible artifacts were included in the analyses. 

Relevant 
--- Baseline 

.. Incorrect 
__ Correct 

Frequent Irrelevant 

FZ 

cz 

c3 

c4 

Pz 

01 

02 

5 uv [ / + , I I I 

0 500 10001500 0 200 400 600 

Time (ms) 

Fig. 4. Grand average ERPs for task relevant and frequent irrelevant probe stimuli in the signal detection 
task. Electrode Fz-Cz was a bipolar derivation. All others were referred to average mastoids. Separate 
averages are plotted in different line styles for three task performance conditions: baseline (-.-.-), incor- 
rect response trials (---), and correct response trials (-). Values on the ordinate are in cV, as shown 
by the scale bar (negative is up). Values on the abscissa represent time after stimulus onset in ms. 
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2.8. ERP measurement 

Grand average ERPs were computed for each electrode site as a function of 
stimuli, task conditions and detection response accuracy (Figs. 4, 5, & 6). Separate 
averages were computed for the baseline condition, and for correct-response trials 
and incorrect-response trials in the task performance conditions, irrespective of task 
factors such as difficulty, target or position. These averages are not the object of the 
regression analyses we will describe below. Instead they serve to define the ERP 
structure for measurement and interpretation of effects. 

Since our goal was to build empirical regression models that account for perfor- 
mance in terms of ERP data, we took a liberal approach to defining the features of 
the ERP to be measured. From grand averages and single-subject averages, we chose 
a set of intervals (windows) from muhiple electrode sites for ERP measurements 
(Table 1). Window selection was guided by two criteria: (a) selected windows cor- 

Fz-Cz 

Fz 

cz 

C3 

c4 

Pz 

01 

02 

Relevant 
--- Baseline 

--. Incorrect 
- Correct 

Frequent Irrelevant 

5 uv [ + , I I / 1171 

0 500 10001500 0 200 400 600 

Time (ms) 

Fig. 5. Grand average ERPs for task-relevant and frequent irrelevant-probe stimuli in the running 
memory task. See Fig. 1 for details. 
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Relevant Frequent Irrelevant 
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Fz 

cz 

c3 
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Pz 

01 

5 uv 
+ 

[_ 

0 500 10001~00 

I I I 
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Time (ms) 

Fig. 6. Grand average ERPs for task-relevant and frequent irrelevant-probe stimuli in the computation 

task. See Fig. 1 for details. 

responded to known ERP component latency and scalp topography or (b) selected 
windows exhibited a clear peak or slow wave across several subjects and tasks. The 

rationale for matching the measures in Table 1 to ERP components and peaks is 
detailed below. 

2.9. Relevant stimulus ERP features 

Across tasks, the most prominent feature of the relevant-stimulus ERP averages 
was a centro-parietal positive wave beginning about 200 ms post-stimulus and con- 
tinuing for up to 860 ms. This component tended to be smallest during the baseline 

conditions, and largest for trials in which correct responses were made in the active 
conditions. For the signal detection and running memory tasks, the scalp 
topography of the middle phase of this component matched that of the P300. For 
the computation task, this component was less sharply defined and mainly appeared 

to reflect slow wave activity. We measured this component five ways. 
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Table I 
ERP windows measured” in all tasks 

Window 

name 

Electrode site Polarity Measurement interval (ms) 

Start End Center 

Relevant stimuli 
PRE-STIM Pz 

FWI Fz-Cz 

FW2 Fz-Cz 

FW3 Fz-Cz 

FW4 Fz-Cz 

Nl Fz 
P2A Fz 

N2 Fz 

SWI Fz 

P3A Fz 

P3B Pz 

P3C Pz 

SW2 Pz 

PI 02 

P2B 02 

Irrelevanr srimuli 
FWI Fz-Cz 

FW2 Fz-Cz 

NI CZ 
N2 c3 

P3 Pz 

SW1 Pz 

SW2 Pz 
PI 02 

P2 02 

+ 
- 

- 
-I- 

- 

- 

+ 

+ 

+ 

+ 

+ 

- 

-150 0 -75 

80 210 I45 

210 360 285 

460 710 585 

710 1710 1210 

80 210 I45 

190 290 240 

250 400 325 

550 1550 IO50 

350 600 475 

280 480 380 

460 860 660 
860 1760 1310 

80 I80 130 

I50 250 200 

100 200 I50 

200 600 400 

75 I75 I25 

200 300 250 

200 350 275 

200 600 400 
450 550 500 

80 I80 130 

170 370 270 

“ERP measures: I, baseline to peak amplitude; 2, peak latency; 3, average amplitude; 4. root mean 
square amplitude. 

1. P3A corresponds to the positive deflection at electrode Fz between 350-600 ms 
which is seen most clearly in the ERPs for the running memory task. 

2. P3B designates the positive deflection seen at electrode Pz between 280-480 ms 
which is best seen in the ERPs for the signal detection and running memory tasks. 

3. P3C corresponds to the second hump of the positive deflection at Pz which 
follows P3B and is apparent (but not sharply defined) in the ERPs for all tasks. 

4. SW1 measures the slow negative wave that is maximal at Fz between 550- 1550 
ms. It is clearly defined only in the ERPs for the signal detection task. 

5. SW2 measures the positive DC shift seen over posterior electrodes between 
860- 1760 ms. 

The occipital electrodes showed an early positive deflection about 130 ms post- 
stimulus which we designated as Pl. Since there was no indication of hemispheric 
asymmetry for PI, we measured it at 02. The PI was more pronounced in the run- 
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ning memory and computation tasks than in the signal detection task, presumably 
due to the longer stimulus duration (200 ms) employed for these tasks than in the 
signal detection task (50 ms). The Pl was followed by a positive deflection at about 
200 ms, which we designated as P2B. This peak was most sharply defined at elec- 
trode 02 in the ERPs for the signal detection task, but for all tasks it merged with 
the ensuing P300-slow-wave complex. At more frontal locations (e.g., at Cz and Fz) 
a sharp positive deflection with a latency of about 240 ms was observed in the ERP 
averages for all tasks. This peak, which we designated as P2A, was clearly present 
at Fz for all three tasks. 

The ERP at Fz also contained negative-going peaks centered at about 145 ms and 
325 ms immediately preceding and following the P2A, respectively. These peaks, 
which we designated as Nl and N2, are best seen at Fz in the ERPs for the running 
memory task (Fig. 5). 

For compatibility with an earlier study (Trejo et al., 1990), ERPs for a bipolar 
derivation, Fz-Cz, were computed off-line and also averaged (Figs. 4-6). The Fz-Cz 
derivation showed three negative peaks for relevant stimuli in the range between 
O-600 ms, and a slow long-lasting negativity between 600- 1800 ms in some condi- 
tions. We refer to these areas of the ERP underlying these peaks as ‘frontal win- 
dows,’ which we designated as FWl (145 ms), FW2 (285 ms) and FW3 (585 ms). We 
refer to the slow DC shift at Fz-Cz between 710-1210 ms as FW4. 

Rare Irrelevant 
~ - Baseline 

Incorrect 
~ Correct 

.- Fz-Cz -~--.---’ --- ___L- 

Fz 

cz 

c3 

c4 

Pz 

01 

02 

5 uv +’ 
0 200 400 600 

Time (ms) 

Fig. 7. Grand average ERPs for rare irrelevant-probe stimuli in all tasks. See Fig. 1 for details. 
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2.10. Irrelevant probe ERP features 

In all tasks, the average frequent and rare irrelevant-probe ERPs contained an 
occipital PI-NI-P2 complex and a frontal Nl (Figs. 4-6, Fig. 7). The rare irrelevant- 
probe ERP averages were derived from relatively few ERPs and have a correspon- 
dingly low SNR. So we averaged the rare irrelevant-probe ERP averages across tasks 
using weights proportional to the number of trials averaged in each task. The rare 
irrelevant-probe ERP averages for the baseline period suggested a small P300 with 
a maximum at Pz. There were no obvious and consistent differences among baseline, 
correct or incorrect averages in the early components of the irrelevant-probe ERP 
averages. However, a centro-parietal slow wave between about 200-600 ms 
(designated SWl) provided some differentiation among the averages. Correctly pro- 
cessed trials resulted in average ERPs that were more negative in this latency range 
than incorrect or baseline trials. In addition, we defined two measurement windows 
at the Fz-Cz derivation, FWl (150 ms) and FW2 (400 ms). These windows were also 
included for compatibility with the Trejo et al. (1990) study. 

2.11. ERP measures 

The set of windows listed in Table 1 covers traditional ERP components such as 
the Nl and P300, plus some novel deflections such as the negative peaks present in 
the relevant-stimulus ERPs at the Fz-Cz derivation (FWI, FW2 and FW3). Four 
measurements were made in each window: (a) maximum baseline-to-peak amplitude 
(AMP), (b) latency at maximum baseline-to-peak amplitude (LAT), (c) average 
amplitude (AVG) and (d) root-mean-square amplitude (RMS; Trejo, 1988). For the 
AMP and LAT measures, a polarity was pre-defined for each window based on the 
polarity expected from the average ERP waveforms. 

3. Results 

3.1. Multivariate behavioral anafyses 

We performed multivariate analyses of variance (MANOVAs) on the performance 
data for each of the tasks (Table 2). In all tasks, factors included test session, stimu- 
lus difficulty and target. In the signal detection task and the running memory task, 
stimulus position was also entered as a factor. In order to conserve degrees of 
freedom, position was entered as a four-level factor, coded by the axis along which 
a symbol appeared (vertical, horizontal, right oblique or left oblique). Dependent be- 
havioral measures included accuracy and RT in all tasks. Effects on confidence 
ratings in the signal detection task and mental math accuracy in the computation 
task were also tested. The degrees of freedom were corrected for violations of the 
sphericity assumption where appropriate (Geisser & Greenhouse, 1958). 

There was no main effect of session in any task, indicating that the training had 
led to stable performance levels. As expected, stimulus difficulty significantly af- 
fected performance in all tasks. The target/nontarget distinction affected perfor- 
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Table 2 

MANOVA effects of task variables on performance measures 

Source Signal detection 

df” F 

Running memory 

JI F 

Computation 

df F 

Session (S) 

DifIiculty (D) 

Target (T) 

Position (P) 

SxD 

SxT 

SXP 

DxT 

DxP 

TxP 

SxDxT 

SxTxP 

SxDxP 

DxTxP 

SxDxTxP 

3. 5 4.91 

6, 24 7.19*** 

3, 5 11.87* 

9, 46.39 2.43+ 

6, 24 1.44 

3, 5 0.08 

9. 46.39 0.58 

2. 28 13.65*** 

18, 113.62 2.00* 

9, 46.39 2.91** 

6, 24 3.45* 

9. 46.39 0.62 

18. 113.62 I.51 

18, 113.62 0.71 

18, 113.62 0.78 

2. 6 1.75 3. 4 0.50 

2. 6 5.48’ 6, 24 14.54*** 

2, 6 5.12 3. 5 3.50 

6, 40 3.001 

2. 6 0.97 6, 20 0.50 

I, 7 0.00 3, 4 1.53 

6. 40 2.06 

2. 6 0.00 6. 24 I.83 

6, 40 1.49 

6. 40 0.86 

I. 7 0.49 6. 20 8.53*** 

6, 40 1.78 

6, 40 0.91 

6. 40 0.90 

6, 40 0.79 

“Fractional df indicate that Geisser-Greenhouse corrections were applied. 
l p < 0.05 

*p < 0.01 

***p < 0.001 

mance only in the signal detection task. Where applicable, as in signal detection and 
running memory, stimulus position also affected performance. Several two-way in- 
teractions were significant in the signal detection task, including difficulty x target, 
difficulty x position, and target x position. A three-way interaction of session x 
difficulty x target was significant in the signal detection and computation tasks. 
Due to the small number of subjects, we did not pursue further analyses of the signi- 
ficant interactions. 

3.2. Univariate behavioral analyses 

3.2.1. Signal detection task 
Univariate analyses of variance were performed on each dependent performance 

measure for the main effects and two-way interactions indicated by the MANOVAs. 
In the signal detection task (Table 3, Fig. 8) the main effect of stimulus difficulty 
resulted in significant decreases in accuracy and confidence ratings and increases in 
RT. The main effect of target was significant for RT and confidence but not for ac- 
curacy. Targets produced significantly lower mean RT and higher mean confidence 
ratings than nontargets. There was also a significant main effect of position on accu- 
racy and RT (Fig. 9). For both measures, performance was best (high accuracy, low 
RT) for stimuli presented on the horizontal axis, worst for the vertical axis, and in- 
termediate for the oblique axes. The means were in the same direction for mean con- 
fidence ratings (Fig. 9), but the effect failed to reach significance. 



L.J. Trejo et al. /Biological Psychology 40 (1995) 33-71 49 

Table 3 

ANOVA effects of task variables on signal detection performance measures 

Source 

dl 

Accuracy 

F 

Reaction time Confidence 

F F 

Difficulty (D) 2. 14 30.5*** 16.92*** 6.70** 

Target (T) I. 7 0.48 41.70*** 24. IO** 

Position (P) 3, 21 7.56*’ 3.96* I.54 

DxT 2, I4 20.3*** 0.00 0.00 

DxP 6. 42 3.42** 4.67*‘* 1.22 

TxP 3, 21 3.42* 5.14** 3.52* 

*p < 0.05 
**p < 0.01 
***/I < 0.001 

The difficulty x target interaction indicated by the MANOVA was significant 
only for accuracy (Fig. 8). At low difficulty, target accuracy was higher than non- 
target accuracy, but the reverse occurred at high difficulty. This reversal did not ap- 

pear in the confidence or RT data. The position x diffkulty interaction indicated 

-T 
NT 

\.., 
. 

. 

\ 
I 

Stimulus Difficulty 

Fig. 8. Effects of stimulus difficulty on univariate performance measures in the signal detection task for 

target and nontarget stimuli. Left, accuracy (proportion correct); middle, confidence (three-point scale); 

right, RT for detection response (ms). 
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by the MANOVA was significant for accuracy and RT (Fig. 9). For both measures, 
the difference between the horizontal and vertical axes increased with difficulty. In 
addition, the advantage of the left oblique axis versus the right oblique axis at the 
low difficulty level was reversed at high difficulty. Again, the mean confidence 
ratings were in the same direction as these effects, but failed to reach significance. 

The target x position interaction indicated by the MANOVA was significant for 
all three measures (Fig. lo), leading to a complex set of effects. For both the accu- 
racy measure and RT, the effect of stimulus position was greater for targets than for 
nontargets. RT for targets on the vertical axis was about 50 ms higher than RT for 
targets on the horizontal axis, However, for nontargets there was only about 25 ms 
difference between mean RT values on the vertical and horizontal axes. The confi- 
dence rating means for targets and nontargets interacted differently with the position 
factor than did the means for accuracy and RT. Firstly, the position effects for tar- 
gets and nontargets are about the same size. Secondly, the differences between hori- 
zontal and vertical axes are clearly in opposite directions for targets and nontargets, 

L 

/ 

l \ 
=\ 

. 
1 . 

1 2 3 4 1 2 3 4 1 2 3 4 

Stimulus Position 

(l=Horizontal, 2=Vertical, 3=Right Oblique, 4=Left Oblique) 

Fig. 9. Effects of stimulus position on univariate performance measures in the signal detection task as 
a function of stimulus difficulty. Left, accuracy (proportion correct); middle, confidence (three-point 
scale); right, RT for detection response (ms). 
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(l=Horizontal, 2=Vertical, 3=Right Oblique, 4=Lefi Oblique) 

Fig. 10. Effects of stimulus position on univariate performance measures in the signal detection task for 
target and nontarget stimuli. Left, accuracy (proportion correct); middle, confidence (three-point scale); 
right, RT for detection response (ms). 

i.e., confidence at horizontal was greater than confidence at vertical for targets, but 
just the reverse was true for nontargets. Interestingly, there appears to be a perfor- 
mance advantage for targets on the horizontal meridian as compared to the vertical 
meridian for all three measures. The same was not true for nontargets, where the sign 
of the horizontal-vertical differences varied among the measures. 

3.2.2. Running memory task 
In the running memory task the main effect of stimulus difficulty indicated by the 

MANOVA was significant for both accuracy, fll, 71 = 10.15, p < 0.0154, and RT, 
fll, 71 = 8.23, p < 0.0240. Accuracy was higher for difficulty level one than for level 
two and, correspondingly, RT was lower for level one than for level two (Fig. 11). 

The effect of position indicated by the MANOVA was significant for RT {Fig. 1 I), 

03, 211 = 3.08, p < 0.0496. As in the signal detection task (Fig. 9), mean RT was 
highest for stimuli presented on the vertical meridian, lowest on the horizontal meri- 
dian, with the oblique meridians falling in between. Although the data suggest a po- 
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(1 =Horizontal, 2=Vertical, 3=Right Oblique, 4=Left Oblique) 

Fig. 1 I. Effects of stimulus position on univariate performance measures in the running memory task as 

a function of stimulus difficulty. Left, accuracy (proportion correct); right, RT for detection response 

(ms). 

sition x difficulty interaction (Fig. 1 l), no significant two-way interactions were 
indicated by the MANOVA results for the running memory task. 

3.2.3. Computation task 

In the computation task, the main effect of difficulty indicated by the MANOVA 
was significant for mental arithmetic accuracy fl2, 141 = 55.69, p < 0.0001. Mean 
accuracies for the easy, medium and hard levels were 0.47, 0.36 and 0.22, respective- 
ly. Difftculty did not significantly affect detection response accuracy (for target/non- 
target configurations) or the RT for that response. No significant two-way 
interactions were indicated by the MANOVA. 

3.3. Factor analyses 

In order to summarize performance and provide a general measure that could be 
correlated with ERP indices, a factor analysis of the dependent measures was per- 
formed. Using the principal components method, factors were extracted from the 
correlation matrix of the single-trial performance measures for all subjects within 
each task (Table 4). In the signal detection and running memory tasks, a single 
unrotated factor accounted for a majority of the variance in the single-trial perfor- 
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Table 4 

Factor analyses of task performance measures 

Factor Statistics 

Eigenvalue Proportion of 

variance 

Factor pattern 

Accuracy Confidence Reaction 

time 

Signal detection 

I 
2 

3 

I.55 0.52 0.52 0.81 -0.79 

0.89 0.29 0.85 -0.21 0.34 

0.56 0.19 -0.07 0.55 0.51 

Factor Statistics 

Eigenvalue Proportion of 

variance 

Factor pattern 

Accuracy Reaction 

time 

Running memory 

I 

2 

I.19 0.59 0.77 -0.77 

0.38 0.41 -0.64 -0.64 

Factor Statistics 

Eigenvalue Proprotion of 

variance 

Factor pattern 

Math Detection Reaction 

accuracy accuracy time 

Computation 

I 

2 

3 

I.19 0.40 0.77 -0.02 -0.17 

1.00 0.33 -0.13 -0.99 -0.10 

0.81 0.27 -0.63 0.14 -0.63 

mance data. In the computation task, two factors were required to explain more than 
50% of the variance. However, the second factor loaded almost exclusively on the 
detection accuracy variable which the ANOVAs had shown to be insensitive to 
manipulations of task variables. For this reason, only the first factor from the 
computation task was used as a global performance measure. 

Primary factors in all tasks exhibited some similarity in structure. Each factor 
weighted accuracy measures positively and RT negatively, indicating that speed and 
accuracy were positively correlated. The confidence rating in the signal detection 
task was also weighted positively, indicating a correlation with accuracy. Thus, high 
scores on the primary factor in that task indicated fast, accurate and confident 
responses. In the other two tasks, high scores on the primary factor indicated fast 
and accurate responses. For the computation task, however, only math accuracy 
(not detection accuracy) affected primary factor scores significantly. The negative 
loading for detection response accuracy in the first factor suggests that math accu- 
racy was compromised when subjects took too long to make the detection response, 
perhaps due to the forced pace of the task. Primary factors for each task were 
validated by performing the factor analyses within subjects and comparing the 
within-subjects factor loadings to the across-subjects loadings. In the signal detec- 
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tion and running memory tasks, primary factor patterns for all subjects matched the 
across-subjects pattern. In the computation task, the primary factor pattern for six 
of the eight subjects matched the across-subjects pattern. Of the two subjects who 
differed from the group, one (#7) showed a higher loading for detection accuracy 
than for math accuracy. The other (#4) showed nearly equal loadings for both 
accuracy measures. 

Standardized scoring coefficients for the primary performance factor were com- 
puted and applied to the single-trial data for all three tasks. (Due to the good agree- 
ment among six of the eight subjects in the computation task, the across-subjects 
primary factor was applied to all subjects’ data for that task also.) The result was 
a single measure, Performance Factor 1 (PFl), which reflected overall performance 
quality for any single trial. The equations defining PFl were: 

PFl, = 0.33 Accuracy + 0.53 Confidence - 0.51 RT (1) 

PFIM = 0.65 Accuracy - 0.65 RT (2) 

PFlc = 0.65 Math Accuracy - 0.02 Detection Accuracy - 0.51 RT (3) 

where the subscripts S, M, and C, denote signal detection, running memory, and 
computation, respectively. 

3.4. Sensitivity of factor scores to task variables 

As for the raw behavioral data (accuracy, RT, etc.), repeated-measures ANOVAs 
were performed for each task to determine the sensitivity of PFl factor scores to task 
variables. In the signal detection task (Table 5), significant main effects included dif- 
ficulty, target and position. These were similar to the effects on the raw performance 
data. Performance, as measured by PFl, decreased almost linearly with task difficul- 
ty (easy = 0.31, medium = 0.00 and hard = -0.35) and was higher for targets (0.07) 
than nontargets (-0.09). PFl was best for stimuli on the horizontal meridian (0.09), 

Table 5 
ANOVA effects of task variables on signal detection performance Factor I 

Source df F 

Difficulty (D) 2, 14 16.61*** 
Target (T) 1, 7 27.65** 
Position (P) 3, 21 5.49** 
DxT 2, I4 2.11 
DxP 6, 42 4.60” 
TxP 3, 21 5.81** 

*p c 0.05 
**p < 0.01 
l **p < 0.001 
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worst on the vertical meridian (-0.12) and intermediate for the oblique meridians 
(left = 0.00, right = -0.01). 

3.4.1. Signal detection task 
Of the three two-way interactions that were significant in the analyses of the raw 

signal detection performance measures, only two were significant for PFl (Table 5, 
Fig. 12). The difficulty x position interaction indicated an increase in the effect of 
the position factor with increasing stimulus difficulty. PFl was nearly level across 
positions for easy targets. For more difficult targets, PFl was higher on the horizon- 
tal meridian than on vertical meridian, with the oblique axes having intermediate 
PFl scores. A similar increase of position effects with increasing difficulty occurred 
in the raw performance data (Fig. 9). The target x position interaction (Fig. 12) in- 
dicated weak or absent position effects for nontargets, and larger position effects for 
targets. The position effect for targets resembled that of difftcult stimuli in general 
with best performance on horizontal axes, poorest performance on vertical axes and 
intermediate performance on oblique axes. 

3.4.2. Running memory task 
In the running memory task, there was a significant main effect of stimulus 

difficulty on PFl, F[l, 71 = 12.21, p < 0.0101. Mean values of PFl for easy and 
difficult memory problems were -0.18 and 0.18, respectively. No other main effects 
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Fig. 12. Effects of stimulus positicn on PFI performance measure in the signal detection task as a function 
of stimulus di!Xculty (left) and for target and nontarget stimuli (right). 
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or two-way interactions were significant. However, a three-way interaction of ses- 
sion x target x position was significant 1;13, 211 = 3.16, p < 0.0462. 

3.4.3. Computation task 
In the computation task, the main effect of difficulty on PFl was significant, fl2, 

141 = 28.32,~ c 0.0001, in agreement with the MANOVA results for the raw perfor- 
mance data. However, unlike the MANOVA results, the main effect of target was 
also significant for PFl, F[l, 71 = 11.87, p < 0.0108. Mean PFl values for targets 
at the easy, medium, and hard levels were 0.27, 0.02, and -0.14, respectively. The 
corresponding PFl values for nontargets were 0.09, -0.05, and -0.18, respectively. 
Although the nonsignificant MANOVA results precluded a significance test for the 
target main effect in the ANOVAs on the raw performance measures, we did observe 
significant F ratios for both mental math accuracy and reaction time and a non- 
significant low F ratio for detection accuracy. Thus, the large loadings for mental 
math accuracy and reaction time on PFl (Table 4) led to the significant main effect 
of the target factor on PFl. In addition, there was a significant two-way interaction 
of difficulty x target, fl2, 141 = 6.76, p < 0.0332. This was expressed as a limiting 
effect of difficulty on the target-related differences in PFl : at the easy difficulty level, 
mean PFl values for targets were 0.18 higher than nontargets, but this difference 
diminished to 0.07 at medium difficulty and to 0.04 at the hard difficulty level. 

3.5. Effects of task performance conditions on ERP amplitudes 

To identify major sources of ERP variance related to task performance condi- 
tions, we performed a limited analysis of the ERP measures, which focused on the 
average amplitude measure (AVG) for each feature of the relevant- and irrelevant- 
probe ERPs (Table 1). For each feature, a repeated-measures one-way ANOVA was 
performed with condition as the factor. Condition had three levels. The first level 
corresponded to the baseline blocks of trials. The second and third levels cor- 
responded to the incorrect-response trials and correct-response trials in the active 
task performance blocks. Detection response accuracy was used to assign trials to 
conditions for the signal detection and running memory tasks. Math accuracy was 
used to assign trials to conditions in the computation task. We also performed two 
planned comparisons of the means as follows: baseline-active (B-A), where ‘active’ 
is the mean of the correct and incorrect levels, and incorrect-correct (I-C). 

3.5.1. Signal detection task 
For the relevant-stimulus ERPs, three features depended on the condition factor 

in the signal detection task: P3B-AVG, P3C-AVG, and SWl-AVG (Table 6). For 
the P3B-AVG measure, the main effect of condition was significant. Mean P3B- 
AVG was 4.04 PV in the baseline condition, 6.86 PV in the incorrect condition and 
8.25 pV in the correct condition. The B-A and I-C differences were both significant. 

For the P3C-AVG measure, the main effect of condition was significant. Mean 
P3C-AVG was 2.29 pV in the baseline condition, 4.33 PV in the incorrect condition 
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Table 6 

Effects of condition on ERP average-amplitude measures 

Conditiona 

df 

Signal detection Running memory Computation 

F ,b F e F C 

Task-relevant stimulus ERPs 
P3B 

Overall 2, 14 

B-A 1, 7 

I-C 1, 7 
P3C 

Overall 2, I4 

B-A 1, 7 

I-C 1, 7 
SWI 

Overall 2, I4 

B-A 1, 7 

8.27’ 

8.41’ 

7.26* 

0.63 13.02** 

21.29** 

0.85 

0.99 

8.47’ 

8.57* 

1.92* 

0.62 14.73*** 

34.52*** 

7.03. 

7.51* 

0.55 

Irrelevant-probe ERPs 

FW2 
Overall 2, I4 

B-A 1, 7 
NZ-AVG 

Overall 2, I4 

B-A 1, 7 
P3-AVG 

Overall 2, I4 

B-A 1, 7 

I-C 1, 7 
SWI-AVG 

Overall 2, 14 

B-A 1, 7 
SWZ-AVG 

Overall 2, I4 

B-A 1, 7 

5.48’ 

7.23’ 

0.78 

4.24’ 

7.071 

0.97 
- 

7.59; 

16.68** 

10.49** 

14.63** 

0.83 4.42* 

6.80* 

11.30** 

14.85” 

0.79 

7.22* 

9.27* 

7.22 

“B - A: comparison of means in the baseline and active conditions; I - C: comparison of means for 

correct- and incorrect-response trials in the active conditions, 

bGeisser-Greenhouse epsilon. 

*p < 0.05 

**p < 0.01 

***p < 0.001 

and 5.56 pV in the correct condition. As for P3B-AVG, the B-A and I-C differences 
for P3C-AVG were both significant. 

For the SW1 measure (a late frontal negative slow wave), the main effect of condi- 

tion was significant. Mean SWl-AVG was 0.35 pV in the baseline condition, -2.39 
pV in the incorrect condition and -1.95 pV in the correct condition. Unlike the two 
P3 measures, the I-C difference was not significant for SWl-AVG. Only the B-A dif- 
ference was significant. 
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For the irrelevant-probe ERPs, five average amplitude measures were sensitive in 
the condition factor in these analyses. There was a significant main effect of condi- 
tion on FWZ-AVG. Mean FWZAVG was -0.49 PV in the baseline condition, 0.93 
PV in the incorrect condition and 1.06 PV in the correct condition. Of the two com- 
parisons, only the B-A difference was significant. 

There was a significant main effect of condition on NZ-AVG. Mean NZAVG was 
1.51 PV in the baseline condition, -0.25 FV in the incorrect condition and 0.05 pV 
in the correct condition. Only the B-A comparison was significant. 

The main effect of condition on P3-AVG was significant. Mean P3-AVG was 2.40 
PV in the baseline condition, -0.31 FV in the incorrect condition and -0.03 PV in 
the correct condition. Only the B-A comparison was significant. 

The main effect of condition on SW 1 -AVG was also significant. Mean SW 1 -AVG 
was 0.93 PV in the baseline condition, - 1.46 PV in the incorrect condition and - 1.52 
PV in the correct condition. Only the B-A comparison was significant. 

Finally, the main effect of condition was significant for SW2AVG. Mean SW2- 
AVG was -0.39 PV in the baseline condition, -2.69 PV in the incorrect condition 
and -2.85 pV in the correct condition. Again, only the B-A comparison was signi- 
ficant. 

3.5.2. Running memory task 

The main effects of condition on two relevant-stimulus ERP features, P3B-AVG 
and P3C-AVG, were significant in the running memory task. Mean P3B-AVG was 
3.78 PV in the baseline condition, 5.32 PV in the incorrect condition and 6.37 PV 
in the correct condition. Mean P3C-AVG was 1.90 PV in the baseline condition, 3.25 
PV in the incorrect condition and 4.33 PV in the correct condition. The pattern of 
results was the same as that observed in the signal detection task. However, unlike 
the signal detection task, only the B-A differences were significant. 

For the irrelevant-probe ERPs, only one feature, NZ-AVG, was significantly af- 
fected by the condition factor in the running memory task. Mean N2-AVG was 1.33 
PV in the baseline condition, 0.17 PV in the incorrect condition, and -1.06 PV in 
the correct condition. Only the B-A difference was significant. 

3.5.3. Computation task 
No effects were observed for AVG measures of the relevant-stimulus ERP fea- 

tures. Only the P3-AVG measure for the irrelevant-probe ERPs was significantly af- 
fected by the condition factor. Mean P3-AVG was 1 .OO PV in the baseline condition, 
0.87 PV in the incorrect condition, and -0.84 PV in the correct condition. Surprising- 
ly, in this case, only the I-C difference was significant. 

3.6. Regression analyses 

We performed a complete analysis of single-trial regression models, but we con- 
cluded that the proportions of variance explained by the models and the SNR of the 
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ERP measures were too low to be of practical value. ’ To increase the SNR of the 
ERPs, we applied a running-mean process to the series of single-trial ERPs in each 
block of trials for all subjects. We constrained the process to average ERPs over a 
window that contained a maximum of 10 trials (mean interval of 3.1 s, range 2.6-3.5 
s). Thus, the process replaced each ERP with an average ERP based on itself and 
the ERPs from the preceding nine trials. The first nine of each block were omitted. 
A minimum of seven artifact-free ERPs in each window were included in each ERP 
average. When the IO-trial window contained more than three ERPs with artifacts, 
no average ERP was computed, a gap was left in the sequence of running-mean 
ERPs at the position of the current trial, and the window was advanced. After ar- 
tifact rejection, there were too few ERPs for the rare irrelevant-probe ERP measures 
to be included in the models. So only the frequent irrelevant-probe ERP measures 
were included in the running means. 

We applied the same running-mean process to the PFl measure. The result was 
a series of running-mean ERPs and PFl which could be used to develop regression 
models. Because our purpose was to examine the effect of increasing ERP signal-to- 
noise ratio on the reliability of the ERP-based models, we did not apply the running- 
mean process to the task factors, nor did we force them into the regression models’. 

‘To provide a reference for estimating how much the regression models are improved by using lo-trial 

running means versus single-trial ERPs, we provide the range of R* values for the corresponding single- 

trial regression analyses. 

In the signal detection task, the general model of PFI based on ERP measures alone was significant 

with an R* of 0.09. When irrelevant-probe ERP measures were excluded from the model, R’ was 0.07. 

A model based only on measures of ERPs for the irrelevant probes was significant but the R’ was only 

0.03. Individual models based on relevant-stimulus ERP measures had an average R* of 0.21. For the 

irrelevant-probe ERP measures the corresponding average R* was 0.13. 

For the running memory task, the general model of PFI based on ERP measures alone was significant 

with an R* of 0.16. When irrelevant-probe ERP measures were excluded from the model, the R’ decreas- 

ed to 0.13. A model based only on measures of ERPs for the irrelevant probes was significant with an 

R2 of 0.07. Significant individual regression models based on relevant-stimulus ERP measures alone 

were obtained in all eight subjects, with an average R* of 0.17. Individual models based on irrelevant- 

probe ERP measures alone had an average R* of 0.07. 

For the computation task, the general model of PFI based on ERP measures alone was significant with 

an R’ of 0.10. For the model based on relevant-stimulus ERP measures alone, the R? was 0.09. A model 

based only on irrelevant-probe ERP measures was significant, but the R* was only 0.03. Significant indi- 

vidual regression models based on relevant-stimulis ERP measures alone were obtained in all eight sub- 

jects, with an average R* of 0.12. individual models based on irrelevant-probe ERP measures alone had 

an average R* of 0.06. 

* In the initial single-trial regression analyses, task factors and interactions that had been significant 
in the ANOVAs were used to model PFI alone and also forced into regression models based on ERP 

measures. In the general model for the signal detection task, task factors alone led to a significant model 

with an R2 of 0.21. When we combined task factors with ERP measures, the R* increased to 0.42. The 

corresponding models for the running memory task were also significant. with R2 values of 0. I I and 

0.27, respectively. For the computation task, again the models were significant. with corresponding R’ 
values of 0.04 and 0.19. In all tasks, ERP measures clearly explained as much or more unique variance 
in PFI than the task factors and their interactions. 
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In these analyses, a forward-selection stepwise approach (SAS PROC STEP- 
WISE) was used to develop linear regression models that explain trial-to-trial varia- 
tions in overall task performance (PFI) in terms of relevant-stimulus ERP measures 
or irrelevant-probe ERP measures. For each task, a general model (for all subjects) 
and individual models for each subject were developed. For all models, the signifi- 
cance was assessed using an F ratio test with (IL set at 0.01. In addition, because each 
running-mean ERP combined data from 10 single-trial ERPs, we divided the cor- 
responding degrees of freedom for significance tests by 10. 

In addition to improving SNR, the running-mean process may lead to improved 
regression models as a result of adding observations that share large proportions of 
variance with their neighbors. However, the procedure is valid for on-line prediction, 
particularly when the models are validated with independent observations, as shown 
below. 

Our regressions were performed as part of a conservative cross-validation analy- 
sis. This procedure used the data from the odd-numbered blocks of trials as a screen- 
ing sample to build the models and the data from even-numbered blocks of trials to 
calibrate the models and assess shrinkage of the model R’. In general, the individu- 
al running-mean ERP models of PFl developed on odd-numbered blocks explained 
PFl nearly as well in even-numbered blocks for most subjects (Tables 6, 7, & 8). In 
addition, general models of PFl based on relevant-stimulus ERP measures cross- 
validated with little or no shrinkage of the R* in the running memory task and the 
computation task, but not in the signal detection task. 

3.6.1. Signal detection task 
No general model of PFl cross-validated. For the relevant-stimulus ERP mea- 

sures, the stepwise algorithm produced individual regression models that cross- 

Table I 
Cross validated* regression models of signal detection performance 

Subject Screening sample Calibration sample Shrinkage 

F df R2 F df R2 

Relevant stimuli 
I 9.96 

2 16.59 

4 14.85 

5 32.83 

6 23.84 

7 21.52 

Irreievanr slimuii 
I 9.61 

2 13.25 

6 10.69 

17, 545 0.24 7.57 17, 559 0.19 0.05 

16, 364 0.42 14.34 16, 379 0.38 0.04 

16, 383 0.38 18.55 16, 398 0.34 0.04 

19, 405 0.61 II.64 19, 423 0.34 0.27 

16, 381 0.50 14.74 16, 394 0.37 0.13 

17, 470 0.50 13.33 17, 486 0.32 0.18 

7, 298 0.18 3.07 7, 364 0.06 0.13 

12, 327 0.33 5.75 12, 396 0.15 0.18 

9, 309 0.24 7.60 9, 372 0.16 0.08 

*p < 0.KJO1 
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Table 8 

Cross validated* regression models of running memory performance 

Subject Screening sample Calibration sample Shrinkage 

F t!! R? F df R? 

Relevant sfimuli 
All 66.53 36, 4617 0.34 66.51 36, 4636 0.34 0 

1 15.40 IS, 558 0.47 26.50 15. 571 0.41 0.06 

2 31.23 19, 556 0.52 29.35 19, 574 0.49 0.02 

3 28.04 16, 558 0.45 20.17 16, 571 0.36 0.08 

4 26.04 19, 682 0.42 27.93 19. 693 0.44 0 

5 21.52 24, 551 0.48 16.65 24, 573 0.41 0.07 

6 25.51 17, 558 0.44 23.60 17. 573 0.41 0.03 

7 26.23 19, 479 0.51 24.46 19, 496 0.48 0.03 

8 17.57 17. 558 0.35 18.78 17, 571 0.36 0 

Irrelevant stimuli 

5 12.62 IO. 437 0.22 6.57 IO. 537 0.11 0.1 I 

7 13.52 8. 366 0.23 9.07 8. 450 0.14 0.09 

*p < 0.0001 

validated in six subjects (Table 7). R2 ranged from 0.24-0.61 for the screening sam- 
ple (mean = 0.44) and from 0.19-0.37 for the calibration sample (mean = 0.32). The 
shrinkage in R2 ranged from 0.05-0.27 (mean = 0.12) and tended to increase in 
proportion to the value of R*. 

For the irrelevant-probe ERP measures, the stepwise algorithm produced individ- 
ual regression models that cross-validated in three subjects. R2 ranged from 
0.18-0.33 for the screening sample (mean = 0.25) and from 0.06-0.16 for the cali- 

Table 9 
Cross validated* regression models of computation performance 

Subject Screening sample Calibration sample Shrinkage 

F df R2 F df R2 

Relevant stimuli 
All 91.79 

I 13.57 

2 13.61 

3 27.56 

4 19.09 

5 12.62 

6 14.11 

7 10.82 

8 9.94 

Irrelevant stimuli 
4 12.36 

28, 4272 0.38 86.42 28, 4286 0.36 0.02 

16, 559 0.28 10.69 16, 574 0.23 0.05 

14, 560 0.55 43.68 14, 572 0.52 0.03 

23, 552 0.53 21.63 23, 571 0.47 0.06 

21, 266 0.60 Il.64 21. 286 0.46 0.04 

14, 549 0.24 IO.10 14, 562 0.20 0.04 

23. 552 0.37 9.93 23, 571 0.29 0.08 

15, 555 0.23 II.50 15, 564 0.23 0 

17, 557 0.23 9.28 17. 572 0.22 0.02 

6, 230 0.24 6.88 6, 254 0. I4 0.08 

*p c 0.0001 
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bration sample (mean = 0.12). The shrinkage in R’ ranged from 0.13-O. 18 
(mean = 0.13). 

3.6.2. Running memory task 
A general model based on relevant-stimulus ERP measures cross-validated. The 

R2 for this model was 0.34 with no shrinkage. The stepwise algorithm included 36 
ERP measures. Of these, only three variables had relatively large influence, as in- 

dicated by the partial R2: FW3-RMS (Fz-Cz, 460-710 ms), P3A-AVG (Fz, 

350-600 ms), and Nl-AVG (Fz, 80-210 ms). The corresponding partial R2 values 
for these three variables were 0.10, 0.07 and 0.04, respectively. The 33 remaining 

measures had partial R* values of 0.02 or less. No general model based on 
irrelevant-probe ERP measures cross-validated. 

For the relevant-stimulus ERP measures, the stepwise algorithm produced indi- 
vidual regression models that cross-validated in all subjects (Table 8). R2 ranged 
from 0.35-0.52 for the screening sample (mean = 0.46) and from 0.36-0.49 for the 
calibration sample (mean = 0.42). The amount of shrinkage in the models ranged 

from 0.0-0.08 (mean = 0.04) and bore no clear relationship to the value of R2. 
For the irrelevant-probe ERP measures, the stepwise algorithm produced individ- 

ual regression models that cross-validated in two subjects (Table 8). In both of these 

models, R2 values were about 0.2 for the screening sample and 0.1 for the calibra- 

tion sample. 

3.6.3. Computation task 
A general model based on relevant-stimulus ERP measures cross-validated, with 

R2 values of 0.38 for the screening-sample and 0.36 for the calibration-sample 

(Table 9). The stepwise algorithm included 28 ERP measures. Of these, three vari- 
ables had relatively large influence, as indicated by the partial R2: FW4-AMP (Fz- 
Cz, 710-1710 ms), FW2-AVG (Fz, 210-360 ms), and FW3-AVG (Fz, 460-710 ms). 

The corresponding partial R* values for these three variables were 0.11, 0.07 and 
0.06, respectively. The remaining measures had partial R2 values of 0.03 or less. No 
general model based on irrelevant-probe ERP measures cross-validated. 

For the irrelevant-probe ERP measures, the stepwise algorithm produced only one 
individual regression model that cross-validated. R2 values were comparable to 
those of the running memory task: 0.24 for the screening sample and 0.14 for the 
calibration sample. 

For the irrelevant-probe ERP measures, the stepwise algorithm produced only one 

individual regression model that cross-validated. R2 values were comparable to 
those of the running memory task: 0.24 for the screening sample and 0.14 for the 
calibration sample. 

4. Discussion 

4.1. Relationship of ERP measures to task performance 

Our results show that, given sufficient ERP SNR, as with our running-mean ERP 
measures, we can reliably estimate a global measure of display monitoring perfor- 
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mance using linear regression models. The success of this approach across subjects 
and tasks was clearly greater for models based on ERPs elicited by task-relevant 
stimuli than for models based on ERPs elicited by irrelevant-probe stimuli. For the 
relevant-stimulus ERPs, general models significantly estimated performance in the 
running memory and computation tasks. Individual models reliably estimated per- 
formance in six of eight subjects in the signal detection task and in all subjects in 
the running memory and computation tasks. The R* values for these models ranged 
from 0.19-0.52, with many values in the 0.4-0.5 range. 

In contrast, with the low SNR that is characteristic of single-trial ERPs, models 
of task performance were not generally reliable and explained small proportions of 
variance. For the individual screening-sample models based on relevant-stimulus 
ERP measures in the signal detection task, the single-trial data yielded an average 
R* of 0.21 whereas the running-mean data yielded an average R* of 0.44. The cor- 
responding comparison of R* values was 0.17 as against 0.46 for the running 
memory task, and 0.12 as against 0.38 for the computation task. If we take the ratios 
of the R* values for running-mean models to single-trial models in the three tasks, 
we obtain values of 2.1, 2.7 and 3.2, respectively. These ratios suggest that the 
improvement in the R* due to, IO-trial ERP averaging is a factor of about 2-3, 
depending on the task. This is close to the theoretical value of the increase in SNR 
between one and 10 trials, which should be m, or J9 = 3 (Regan, 1989, 
p. 56). 

While this is an interesting parallelism, it is an oversimplification because 
extrapolation to larger values of N would lead to R* values greater than one. More 
likely, there is a nonlinear relationship between SNR and R* in such models, with 
an upper limit on R* set by the covariance of the ERP component-generating pro- 
cesses and task performance. Nevertheless, it appears that techniques that increase 
the SNR of ERP measures, such as time-varying filters (Hohenberger, 1988), princi- 
pal component measures or wavelet measures will lead to improvements in the accu- 
racy and speed (i.e., fewer trials required) of ERP-based performance estimation. 
For example, a reanalysis of the signal processing data from this experiment using 
principal components or wavelet-based feature extraction of the running-mean ERP 
data led to a significant, cross-validated, general model of our PFl measure (Trejo 
& Shensa, 1993). This result was not obtained using the straightforward amplitude 
and latency measures we applied in this paper. 

Some insight into the covariance between ERP components and performance may 
be provided by the standard deviation of the R* values among the individual 
models. If we assume that the covariance between ERP and performance measures 
depends on subject factors, such as the strategy employed by the subject, then the 
standard deviation of R* values among the subjects and tasks sets a limit on how 
close to 1.0 the expected value of R* can be. Using the R2 values from the relevant- 
stimulus ERP models and the running-mean data, we observed that the standard 
deviation of R* values across the signal detection, running memory, and computa- 
tion tasks was 0.10. With this standard deviation, if the R* estimate were 1 .O, a rea- 
sonable one-sided confidence interval for the true value of R* would be 1 .O f 1.65~ 
or between 0.84 and 1.0. Conservatively, then, the lower limit of this interval, or 
0.84, may serve as an upper limit of the expected value of R* for regression models 
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of the type we have developed, using asymptotically high estimates of the ERP SNR. 
This number should be considered only in the context of our experiments, where fac- 
tors such as eye movements, blinks, head and body motion, and distracting stimuli 
were carefully controlled. Under real-world conditions, the R2 limit is probably 
lower. 

Our results show that ERP-based regression models of task performance are 
generally improved by tailoring the models to the data of individual subjects, as 
compared to general models. However, the degree of improvement in R2 was task- 
dependent. The biggest difference was seen for the signal detection task where no 
general model cross-validated and the mean cross-validated R2 for the individual 
models was 0.44. For the running memory task, the R2 value for the general model 
was 0.34, or 0.12 lower than the average R2 values for the individual models (0.46). 
In the computation task, however, the R2 of the general model nearly matched the 
average R2 of the individual models (0.36 as against 0.38). These comparisons may 
fail to reflect the true degree of improvement possible with individual versus general 
models because, while the stepwise regression procedure was individualized, the set 
of ERP measures was not. More improvement might be found if the ERP measures 
were selected independently for each subject. 

4.2. Implications for performance assessment 

Our results show that linear combinations of single-trial ERP amplitude and 
latency measures are not likely to provide a useful real-time index of task perfor- 
mance. The R2 values obtained with single-trial data were low, but more important- 
ly, single-trial based models were not reliable. However, our single-trial ERP 
measures were crude by present signal processing standards. Application of more 
sophisticated measures, such as wavelets or principal components could lead to 
improved performance assessment using single-trial ERP data. 

On the other hand, the R2 values and reliability of the models based on running- 
mean ERPs we observed suggest that such models are useful for a quasi real-time 
index of performance. For example, in the signal detection task mean values of PFl 
under different task conditions ranged between -0.55 and 0.61. With an R2 value 
of 0.38, as seen in subject two, the standard error of prediction for PFl was 0.53. 
Thus the regression estimate of PFl could perform a binary discrimination between 
the highest and lowest average performance conditions for this subject. We also 
observed that over time, many IO-trial epochs had PFl values below or above these 
mean levels. Thus, over time, additional levels of performance discrimination could 
be provided by the regression estimate of PFl . Still better discrimination of perfor- 
mance levels could be provided for tasks or subjects in which the regression models 
had higher R2 and lower standard errors of prediction. As for single-trial based 
models, some improvement in performance estimates may also be obtained in the 
running-mean based models by using improved ERP signal processing methods. 

Finally, the addition of significant task information, such as the position of the 
stimulus or designation as target/nontarget, should also lead to more accurate 
models of performance. In many real-world tasks, such information is readily avail- 
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able, particularly in computer-controlled tasks. Although task factors were not forc- 
ed into the running-mean ERP models, it was clear from the single-trial models that 
task factors alone explained considerable variance in PFl. Furthermore, this vari- 
ance was not entirely shared with that explained by ERP measures, as shown by the 
increases in R2 we observed when adding ERP measures to models based on task 
factors. 

4.3. Theoretical considerations 

4.3.1. Relevant stimulus ERPs 
As discussed in the introduction, notions of limited capacity or resource allocation 

have been proposed to explain relationships between task demands or task difficulty 
and the amplitude of ERP components such as the P300. Our data provide new in- 
sight into some of these relationships. In the signal detection and running memory 
tasks, two of our parietal average amplitude measures (P3B-AMP and P3C-AMP) 
for the relevant-stimulus ERPs were greater when the task was actively engaged than 
in the baseline condition. Also in both tasks, these amplitude measures were greater 
for correct trials than for incorrect trials in the active condition, although this differ- 
ence narrowly missed significance in the running memory task (p = 0.07). P3B-AMP 
and P3C-AMP are the measures that most-closely match the latency and scalp distri- 
bution criteria of P300 (Trejo et al., 1991). Although we did not analyze P300 x dif- 
ficulty directly, these results suggest that P300 for the task-relevant stimuli decreased 
as a function of task difficulty because difficulty had the largest effect on accuracy 
of all task factors (Figs. 8, 9 & 11). 

Such a decrease in P300 amplitude with an increase in primary task difficulty 
disagrees with the idea that P3OOs elicited by task-relevant stimuli simply index the 
processing resources required for the task. For example, Kramer, Wickens, Vanasse, 
Heffley, & Donchin (1981) found that increases in the difficulty of a step-tracking 
task led to increases in the amplitude of the P300 elicited by the primary task stimuli 
(movements of the cursor being tracked) but to decreases in the amplitude of the 
P300 elicited by secondary task probes. This result was explained in terms of a trade- 
off of processing resources between primary and secondary tasks. Since we used no 
secondary task, the differences in P300 amplitude between accurate- and inaccurate- 
response trials that we found cannot simply be due to a trade-off of resources among 
tasks. In addition, the P300 for the baseline conditions, where the difficulty level was 
effectively zero, was smaller than in the active conditions, regardless of accuracy. 

An alternative to a simple resource-allocation model is that, in a decision-making 
task, the P300 generator also produces an output that increases with the information 
available to make decisions about the task-relevant stimuli. Support for this view has 
been reported in the form of greater P300 amplitudes for more confident signal 
detection decisions than for less confident decisions (Parasuraman et al., 1982; Sut- 
ton, Ruchkin, Munson, Kietzman & Hammer, 1982). Additional support for this 
view was provided by an experiment in which the amount of information in the task- 
relevant stimuli was directly manipulated (Ruchkin, Johnson, Canoune, Ritter & 
Hammer, 1990). Our confidence-response data in the signal detection task also sup- 
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port this view because confidence was positively correlated with response accuracy, 
as shown by the positive loadings on PFl of these variables in the factor analysis. 

This ‘information’ model could be combined with the resource-allocation model 
as follows. The increases in P300 amplitude between baseline and active conditions 
in our tasks indexed the commitment of processing resources to task demands. The 
decrease in P300 amplitude between accurate and inaccurate response trials indexed 
a decrease in the amount or quality of information available to the decision-making 
process. In the signal detection task, this decrease in information is clearly related 
to the degradation of the stimuli caused by reducing the contrast on the more dif- 
ficult trials. In the running memory task, the comparison letters had to be held in 
memory longer during the difficult conditions than in the easy conditions. During 
this longer retention interval, the comparison letters in memory could be decreased 
by decay of iconic storage (Sperling, 1960) or displaced by following letters (Waugh 
& Norman, 1965), either of which would decrease the information. Still another ex- 
planation for difficulty-related decreases in P300 amplitude in complex tasks can be 
derived from trade-offs of internal processes such as memory scanning and rehearsal 
(for an example, see Mecklinger, Kramer & Strayer, 1992). 

The preceding argument is not necessarily refuted by the absence of P300 effects 
in the computation task. For one thing, a P300 component was not clearly present 
in the ERP averages for this task. More importantly, this task differed from the 
other tasks in complexity and in the type of processing. In this task, difficulty was 
a function of abstract properties of the stimuli, and not necessarily of information 
which could be degraded or which decayed over time. Possibly, the performance of 
this task relied more heavily on long-term memory, performance being better for 
familiar number pairs than for less familiar pairs. 

In addition to the P300-related effects, in our signal detection task there was an 
effect of task performance conditions on the amplitude of SW 1, which corresponds 
to a late frontal negative slow wave. SW1 amplitude, however, showed only the task- 
engagement related increase and no differences as a function of response accuracy. 
Several such negative slow waves have been reported. Our SW1 results agree with 
Rohrbaugh, Syndulko & Lindsley (1978), who reported a frontally negative ‘after- 
wave’ for visual and auditory stimuli. This slow wave, which was similar to our SW1 
in scalp distribution and latency, was larger when subjects were required to silently 
count stimuli or perform a discrimination than in passive conditions. We also saw 
no evidence for the late negative slow wave reported by Ruchkin et al., (1988), which 
increased in amplitude with conceptual difficulty. Unlike our SWl, their negative 
slow wave had a centro-posterior distribution and reversed in polarity at more fron- 
tal locations. However, identification of our SW1 measure with other slow waves is 
complicated by possible cancellation among multiple slow waves, which occurs in 
ERP averages. Special methods may be required to deal with such cancellation 
(Loveless, Simpson & Naiitiinen, 1987). 

There were no significant effects on smaller ERP components, such as Pl, Nl and 
P2. However, our data do not provide for strong tests for such effects due to the low 
number of subjects we used. 
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4.3.2. Irrelevant probe ERPs 
For the most part, the amplitudes of irrelevant-probe ERP features were sensitive 

to the difference between passive and active conditions, i.e. task engagement. In the 
signal detection task, the FW2 measure, which extends from 200-600 ms at Fz-Cz, 
was negative in the baseline condition and positive in the active conditions. The task- 
engagement-related change in this measure is consistent with workload-related 
irrelevant-probe ERP effects at Fz-Cz with a latency of 330 ms (Blankenship et al., 
1988b; Trejo et al., 1987 and 1990). A change in amplitude in the FW2 window 
appears to index the engagement of resources required to perform a visual task, but 
does not differentiate well between task performance levels. Trejo et al. (1990) 
observed, however, that the degree of change between passive and active conditions 
was correlated with the mean level of task performance across subjects. 

In two tasks, signal detection and running memory, the amplitude of the N2 com- 
ponent, as measured by N2-AVG, became more negative in the active conditions 
than in the baseline conditions, but did not vary as a function of response accuracy. 
This effect is unclear for two reasons. Firstly, the N2 peak was poorly defined, 
appearing as a shoulder on the descending limb of the Nl. Secondly, the following 
P300 canceled the N2 negativity in varying degrees depending on task conditions. 
In two tasks, signal detection and computation, this P300 effect was significant. The 
P300 tended to be greater in the baseline conditions than during task engagement. 
In the computation task, the P300 also differentiated the accurate- and inaccurate- 
response averages. So we cannot rule out the possibility that the N2 effects were con- 
founded with workload effects on the probe P300 itself, which are less ambiguous 
and have been reported elsewhere (Blankenship et al., 1988a; Kramer, Trejo & 
Humphrey, in press). 

The P300 effect for the irrelevant-probe stimuli suggests that subjects’ attention 
narrowed when the tasks were engaged. That is, they selectively attended the task- 
relevant stimuli and ignored the probes during the active conditions, but attended 
both types of stimuli during the baseline condition. This is consistent with a dual- 
task interpretation, such that subjects performed some monitoring of the probes 
during the baseline condition, but shed this task during active conditions. 

The remaining task-engagement-related changes in amplitude measures of the 
irrelevant-probe ERPs appear consistent with an increase in negative slow wave 
amplitude between passive and active conditions. Such an increase would explain the 
more negative SW1 and SW2 amplitudes in active versus baseline signal detection 
task conditions. We note that these differences are not likely to be caused by the 
frontal negative slow wave (SWl) that increased in the relevant-stimulus ERPs as 
a function of task engagement. The SW1 and SW2 for the irrelevant-probe ERPs 
were much more posteriorly distributed, with a maximum at Pz, as compared to the 
Fz maximum for the relevant-stimulus SWl. Thus, the irrelevant-probe SW1 and 
SW2 measures appear to index a different component than the relevant-stimulus 
SWI. We know of no other reports showing parietal negative slow wave elicited by 
irrelevant probes that increases in amplitude when the probes are ignored to a great- 
er degree. 
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Due to the low numbers of trials and SNR of the rare irrelevant-probe ERPs, we 
attempted no statistical inferences about them. However, we note that these ERPs 
show evidence of several of the effects found in the frequent irrelevant-probe ERP 
averages. In particular, the reversal of polarity in the FW2 window at F&z, the 
presence of a positive voltage in the P300 window at Pz and the greater negativity 
in the SW1 and SW2 windows at Pz are all apparent in the cross-task grand average 
ERP (Fig. 7). Future experiments may find additional diagnostic value by compar- 
ing the rare and frequent irrelevant-probe ERPs. For example, such an approach has 
proven to be successful in workload estimation with rare-frequent difference com- 
ponents of the auditory ERP, such as the mismatch negativity (Kramer, Trejo & 
Humphrey, 1995). 

4.4. Summary 

In this study we examined some of the practical issues and limitations involved 
in an ERP approach to predicting performance on display-monitoring tasks. In three 
visual-display monitoring tasks, we found that a linear regression method of predic- 
ting performance from estimates of ERP components produced models that explain- 
ed substantial variance in task performance and generalized to data collected under 
separate conditions. The level of sophistication of these models was modest, not 
incorporating higher-order or nonlinear terms. Yet, even this modest approach 
indicated that a real-time index of relatively high or low performance is currently 
possible. 

Three factors strongly influenced the accuracy and validity of the regression 
models. Firstly, the number of trials used to estimate ERP components was critical. 
Single-trial estimates were not generally reliable. Estimates based on running means 
of about 10 trials were reliable. We attributed the better reliability of the running- 
mean estimates to improved signal-to-noise ratio (SNR). However, we acknowledge 
that some of this improvement may arise from increasing the number of serially 
correlated observations. Future research should independently address these issues. 
Nevertheless, the validity of the running-mean approach to on-line estimation was 
shown by the generalization of the models to new data. Secondly, the models were 
improved when they were tailored to the data of individual subjects. This suggests 
that implementations of ERP-based monitoring systems ought to be calibrated to the 
user for best results. Thirdly, we found that the utility of task-relevant stimuli for 
performance prediction was high whereas the utility of irrelevant probes was low. 
However, this issue is far from settled, as we did not explore a range of probe types 
nor did we obtain good estimates of the utility of rare or deviant probes. 

Finally, we observed a pattern of ERP effects that is suggestive of two different 
influences on ERP-workload relationships: allocation and information quality. For 
task-relevant stimuli, we observed that P300 and a frontally negative slow wave in- 
dexed the engagement of processing resources as shown by increases in amplitude 
between baseline and active conditions. P300 additionally reflected the quality of 
performance in active conditions, being lower for inaccurate than for accurate- 
response trials. Since accuracy and difficulty were strongly related, we inferred that 
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increasing difficulty led to decreases in P300 amplitude, and proposed that such 
decreases might arise from reduced information quality under difficult conditions. 
For irrelevant probes, a number of components also indexed the engagement of re- 
sources that distinguished baseline and active task conditions. These included a fron- 
tal negativity (FW2), N2, P300 and slow waves. Together, these observations suggest 
that the engagement or application of processing resources produces switch-like 
changes in some relevant-stimulus and irrelevant-probe ERP components, whereas 
information quality both influences performance and modulates the amplitude of the 
P300. 
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