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Abstract
Blind source separation refers to a set of techniques designed to uncover latent (i.e.
directly unobservable) structures in data. Depending on user preferences and the cho-
sen algorithm, latent components can be estimated either simultaneously or iteratively,
one at a time. The latter approach is typically performed using component defla-
tion. However, Camacho et al. (Chemom Intell Lab Syst 208:104212, 2021) showed
that deflation can introduce spurious artefacts into the data, particularly when the
latent components are estimated under constraints. This study explored the theoretical
properties of deflation in the context of higher-order arrays and tensor decomposi-
tion. In certain cases, the tensor latent components may represent noise and must
be removed before further decomposition to accurately reveal the underlying struc-
ture of the data. Building on the ideas presented in Camacho et al. (Chemom Intell
Lab Syst 208:104212, 2021), we investigated whether specific forms of deflation can
generate spurious artefacts in electroencephalogram (EEG) tensor data, particularly
under nonnegativity or unimodality constraints, where orthogonality may lack a nat-
ural interpretation. Our results are demonstrated using two real EEG datasets and one
simulated dataset.
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1 Introduction

Blind source separation (BSS)methods are powerful techniques for identifying hidden
(latent) structures in both matrix data and higher-order arrays (tensors). Depending
on the chosen algorithm, the latent components can be estimated simultaneously or
iteratively.

The latter approach is referred to in the literature as deflation. Deflation techniques
are used in the partial least squares (PLS) regression, independent component analysis,
sparse principal component analysis (sPCA), and other approaches where the simulta-
neous estimation of all latent components is not possible. In this case, the components
are estimated sequentially, one or more at a time, and then deflated from the data
to create a new data matrix for the next estimation. Höskuldsson (1988) proved the
advantage of deflating only one component at a time in PLS using the properties of
singular value decomposition.

However, Camacho et al. (2021) showed that deflation within sPCA can introduce
new directions of variability in the original data. Despite the results being formulated
in the context of sparsity constraints, they can be generalised to an arbitrary situation
in which the components should satisfy different restrictions, for example, nonnega-
tivity or unimodality, assuming that the model structure and deflation step follow the
same principles as in Camacho et al. (2021). Similar problems with different types of
deflations were discussed by Mackey (2008) and Witten et al. (2009). In both studies,
alternative ways of orthogonalization were proposed to avoid introducing possible
artefacts during deflation.

Regarding higher-order arrays, latent components are preferably estimated simul-
taneously, for example, by the so-called alternating least squares algorithm, in the
widely used CANDECOMP/PARAFAC (CP) tensor decomposition (Harshman 1970;
Carroll and Chang 1970) or in the Tucker model (Tucker 1966) because successive
component estimation results in a model with poorer fit (Bro 1997). An exception is
the algorithm by Phan et al. (2015), who proposed a novel component estimation for
CP based on deflation and tensor rank reduction.

However, deflation can also be used for purposes other than component estima-
tion. Acar et al. (2007) used the Tucker model to visually identify artefact-related
latent components, particularly eye blinks, in an electroencephalogram (EEG) ten-
sor. Once the selected components were deflated from the tensor, a second round of
tensor decomposition was performed on the artefact-free data to successfully detect
the sources of epileptic activity. This study also inspired our eye blink removal algo-
rithm, which combines nonnegative CP, component deflation, and spectrum-to-signal
transformation (Rošťáková et al. 2025).

In both studies, the analyses were performedwithout discussing the possible impact
of deflation on the data structure. This topic is addressed in this study. Because most
tensor decomposition models can be expressed in matricized form, the ideas and
proposed metrics from Camacho et al. (2021) can be easily adapted for tensor models.

Among the various combinations of tensor decomposition models, deflation meth-
ods, and data types, we focus on deflation following nonnegative CP decomposition
applied to human EEG data. This specific focus was motivated by several factors.
Compared with more general tensor decomposition approaches, the CP model offers
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distinct advantages, including easier interpretability and uniqueness. Moreover, it has
been widely employed in chemometrics, psychometrics, image processing, and neuro-
physiology (Bro 1997; Cichocki et al. 2009). Among these, the analysis of EEG signals
is central to our long-term research interests. Nevertheless, the theoretical framework
that we describe for deflation following CP decomposition is presented in a general
form. This ensures that our results can be applied or adapted to other types of tensor
data.

The tensor decomposition of EEGdata produces neurophysiologically interpretable
and stable results under nonnegativity and unimodality constraints (Rošťáková et al.
2020; Rosipal et al. 2022). In contrast, while orthogonality may help mitigate the
effects of component deflation (Mackey 2008; Witten et al. 2009), it does not align
with the natural interpretation of EEG. Similarly, nonnegativity is favoured in fields
such as chemometrics, where orthogonality is typically used only for exploratory
purposes (Bro 1997).

The article is organised as follows: Sect. 2 provides a concise overview of the key
findings from Camacho et al. (2021) and describes the fundamentals of CP decompo-
sition. Section 3 focuses on two deflation techniques in the context of tensor data by
adapting the results from Camacho et al. (2021). Real EEG data contaminated by eye
blinks and a simulated dataset, as described in Sect. 4, are used in Sect. 5 to evaluate
the effects of deflation on the data structure. Finally, the results are discussed and the
conclusions are presented in Sects. 6 and 7.

2 Methods

2.1 Notation and basic tensor operations

In this study, a tensor or an N -way array (N ∈ N, N ≥ 3) is denoted by the underlined
uppercase letter X ∈ R

I1×I2×···×IN . Although our primary focus is on the three-way
tensor X ∈ R

I×J×K with the i jkth element denoted as Xi jk, i = 1, . . . , I ; j =
1, . . . , J ; k = 1, . . . , K , the formulas presented below also hold for higher-order
arrays.

The matrices are denoted by the uppercase letters A ∈ R
J1×J2 , vectors by the bold

lowercase letters a ∈ R
K and scalars by the lowercase letters a ∈ R. The M × M

identity matrix is denoted by IM , and el ∈ R
M represents a unit vector with one

at the lth position and zeros elsewhere. A zero vector of length J ∈ N is denoted
by 0J , whereas 1I represents a vector of ones with length I . The Moore-Penrose
pseudoinverse and transpose of the matrix Y ∈ R

N×M are denoted by Y+ and Y�,
respectively.

The definitions of theKronecker (A⊗B) andKhatri-Rao or column-wiseKronecker
products (A�C) follows (Cichocki et al. 2009, pp. 35–36). The tensor-matrix product
in the nth mode X ×n A (Cichocki et al. 2009) of a tensor X ∈ R

I1×···×IN and a matrix
A ∈ R

J×In yields a tensor Y ∈ R
I1×···×In−1×J×In+1×···×IN with a general element
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Y i1...in−1 j in+1...iN =
In∑

in=1

Xi1...in−1in in+1...iN A jin .

The outer product a ◦ b ◦ c of three vectors a ∈ R
I ,b ∈ R

J , and c ∈ R
K results in a

three-way tensor X ∈ R
I×J×K with a general element Xi jk = aib j ck (Cichocki et al.

2009).
Fixing all but one index in a tensor yields a tensor fibre (Cichocki et al. 2009). For

example, a mode-1 fibre is a vector X . jk =
(
X1 jk X2 jk . . . X I jk

)� ∈ R
I . Matriciza-

tion of a tensor in the first mode refers to the transformation of the tensor X ∈ R
I×J×K

into matrix

X(1) = (X .11 X .21 . . . X .J1X .12 . . . X .J2 . . . X .1K . . . X .J K ) ∈ R
I×J K

by concatenating the mode-1 fibres as matrix columns (Cichocki et al. 2009). Matri-
cization in the second and third modes results in the matrices X(2) ∈ R

J×I K and
X(3) ∈ R

K×I J .
The vector space spanned by the columns of the matrix Y ∈ R

N×M is denoted by
C(Y ) and is defined as

C (Y ) = {
x ∈ R

N : x = Y z, z ∈ R
M}

, C (Y ) ⊆ R
N . (1)

Similarly, C
(
Y�)

denotes the vector space spanned by the rows of Y and is defined
as

C(Y�) = {
c ∈ R

M : c = Y�d,d ∈ R
N}

, C(Y�) ⊆ R
M . (2)

2.2 Deflation in sparse PCA

In this section, we consider a two-dimensional space for a while before dealing with
tensors and EEG signal. Let us consider the original data matrix Y1 ∈ R

N×M which
should be decomposed into sparse principal components (PCs). Several algorithms use
a sequential deflation approach to estimate sparse PCs (Camacho et al. 2021). In other
words, the loading p1 ∈ R

M and scores t1 ∈ R
N of the first sparse PC are removed

from the data in the following step, producing a “new” data matrix Y2 = Y1 − t1p�
1 .

The second component score t2 ∈ R
N and its corresponding loading p2 ∈ R

M are
then estimated from Y2. In general, tn+1,pn+1 are estimated after n deflation steps
from the matrix Yn+1 = Yn − tnp�

n , n ∈ N.
However, Camacho et al. (2021) demonstrated that this deflation procedure can

introduce new directions of variability in the data when performing sPCA. They made
the following two assumptions:

• Y1 is of full rank, so rank(Y1) = min(M, N ),
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• tn = Ynqn,qn ∈ R
M . In other words, the vector tn must be a linear combination

of the Yn columns in each deflation step. For example, tn = Ynpn
(
p�
n pn

)−1
in

projection deflation with qn = pn
(
p�
n pn

)−1
.

Under these assumptions,

Yn+1 = Yn − tnp�
n = Yn − Ynqnp�

n = Yn
(
IM − qnp�

n

)
.

Let Pi = IM − qip�
i ; then,

Yn+1 = Yn Pn = Yn−1Pn−1Pn = · · · = Y1P1 . . . Pn, (3)

and the subsequent component score can be expressed as

tn+1 = Yn+1qn+1 = Y1q�
n+1, where q�

n+1 = P1P2 . . . Pnqn+1.

Thus, tn+1 ∈ C(Y1) for all n ∈ N because it is directly expressed as a linear
combination of Y1 columns.

However, we must distinguish between two cases for the vector pn+1:

• M ≤ N
In this case, rank(Y1) = M and consequently C(Y�

1 ) = R
M (Camacho et al.

2021). Therefore, any sparse vector pn+1 belongs to C(Y�
1 ).

• M > N
If Y1 has more columns than rows, rank(Y1) = N < M and C(Y�

1 ) ⊂ R
M .

If pn+1 is estimated by ordinary least squares or another algorithm expressing
pn+1 as a linear combination of the Yn+1 rows, then from the equation (3) we
can conclude that pn+1 ∈ C(Y�

1 ). However, pn+1 is restricted to be sparse in
sPCA, thus pn+1 ∈ C(Y�

1 ) is not guaranteed. This means that new directions of
variability may be introduced in the data through deflation, potentially becoming
the next component extracted from Yn+2.

Camacho et al. (2021) proposed several diagnostic tools for assessing the distortion
introduced by deflation, particularly when M > N . In this study, we focus on the
percentage of artefacts contaminating the components, denoted PercA:

PercAn+1 = tr(O�
n+1On+1)

tr(pn+1t�n+1tn+1p�
n+1)

× 100 [%],

On+1 = (IM − Y�
1 (Y�

1 )+)(Y�
n (Y�

n )+)pn+1t�n+1. (4)

In other words, PercA measures the amount of variance in a component that is not
related to the original data, indicating the amount of distortion introduced during n
deflation steps.

It is evident that PercA = 0 when M ≤ N . However, Camacho et al. (2021)
demonstrated that deflation can still introduce new directions of variability in this
case, especially when the component loadings overlap. Unfortunately, no efficient
method has yet been proposed to evaluate the impact of deflation when M ≤ N .
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2.3 CANDECOMP/PARAFAC

The CP decomposition of a tensor X ∈ R
I×J×K into F latent components follows

the formula

X = � ×1 A ×2 B ×3 C + E =
F∑

f=1

λ f a f ◦ b f ◦ c f + E, (5)

where E ∈ R
I×J×K represents the model error, and � ∈ R

F×F×F is a tensor with
nonzero elements only along its super-diagonal - that is, �i jk �= 0 if and only if
i = j = k, i, j, k ∈ {1, . . . F}.

The columns of the component matrices A = (a1a2 . . . aF ) ∈ R
I×F , B =

(b1b2 . . . bF ) ∈ R
J×F , and C = (c1c2 . . . cF ) ∈ R

K×F represent the component
signatures in the first, second, and the third modes, respectively. To avoid potential
scaling ambiguities, component signatures are usually normalised to the unit norm.
The weight of the f th, f = 1, . . . , F component is stored in the corresponding f th
superdiagonal element of �, denoted by λ f .

CP model (5) can also be expressed using the following matricized forms:

X�
(1) = (C � B)��A� + E�

(1), (6)

X�
(2) = (A � C)��B� + E�

(2), (7)

X�
(3) = (B � A)��C� + E�

(3), (8)

where

�� =

⎛

⎜⎜⎜⎝

λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λF

⎞

⎟⎟⎟⎠ .

The alternating least squares (ALS) algorithm is a widely used method for estimat-
ing component matrices in tensor decomposition. In each iteration, two component
matrices are fixed, whereas the third is estimated using the least-squares criterion.
Specifically, A is estimated from (6) with B and C fixed; subsequently, B is estimated
from (7) with A and C fixed. Finally, C is estimated from (8) with A and B fixed.
These steps are repeated until the stopping criteria are met.

Furthermore, the interpretability and stability of the decomposition can be enhanced
by applying nonnegativity or unimodality constraints to specific modes (Rosipal et al.
2022). As employed in Acar et al. (2007), orthogonality constraints can simplify
computational issues; however, they lack neurophysiological interpretation in EEG
tensor decomposition.
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3 Selected deflationmethods for tensor data and their theoretical
properties

In line with Rošťáková et al. (2025) and Acar et al. (2007), we considered two defla-
tion techniques for tensor data: projection to the nullspace of the space spanned by the
selected component signatures and component subtraction. Both deflation approaches
were used for EEG data analysis. In Acar et al. (2007), latent components represent-
ing artefacts were removed from the tensor using projection deflation, and the deflated
tensor formed an input for subsequent tensor decomposition. The SPECTER algo-
rithm (Rošťáková et al. 2025) was proposed to detect and remove eye blink-related
components from EEG data. Although it does not directly apply a second CP decom-
position on a deflated tensor, this subsequent analysis is natural due to the interest in
the “true” data latent structure after removing artefacts. However, the possible influ-
ence of component deflation has not been discussed, and this study aims to fill this
gap.

3.1 Projection to the nullspace of the space spanned by selected component
signatures

We begin with examining the projection to the nullspace of the space spanned by the
mode-2 signatures. Projection to the nullspace of the space spanned by the mode-1 or
mode-3 signatures can be conducted similarly. Although combining projections across
two or more modes simultaneously is feasible, this study focused on a single-mode
projection during each deflation step.

First, we considered the removal of a single component. Because the order of
the components can be permuted by rearranging the corresponding columns of the
component matrices, let us remove the first component with signature b1. The matrix
QB = IJ − b1(b�

1 b1)
−1b1� is a projection matrix1 to the nullspace of the space

spanned by b1. After some algebra, the multiplication of the tensor X by QB in the
second mode results in

Xnew = X ×2 QB =
F∑

f =2

a f ◦ (QBb f ) ◦ c f + E ×2 QB . (9)

Clearly, the first component is removed, because QBb1 = 0J .
If the columns of B are mutually orthogonal,2 then QBb j = b j , j = 2, . . . , J

indicating that the remaining component signatures are unaffected. Alternatively, the
variability captured by b1 is “removed” from the other mode-2 signatures when com-
ponent signatures (the columns of component matrices) are considered nonnegative,
unimodal, or simply non-orthogonal. However, such modifications may inadvertently
introduce variability that does not correlate with the original data.

1 Since ‖b1‖ = 1, QB can be equivalently expressed as QB = IJ − b1b�
1 .

2 In this case, it suffices that only b1 is orthogonal to all b j , j = 2, . . . , J . However, in practice, the same
constraints are typically assumed for all the signatures in a given mode.
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In the following analysis, it is advantageous to express equation (9) in thematricized
form:

X�
new(2) = X�

(2)QB = X�
(2)(IJ − b1(b�

1 b1)
−1b�

1 )

= X�
(2) − X�

(2)b1(b
�
1 b1)

−1b�
1

= Y − tp�,

where Y = X�
(2),p = b1 and t = X�

(2)b1(b
�
1 b1)

−1. This formulation precisely aligns
with the deflationmodel presented byCamacho et al. (2021).Moreover, the assumption
t ∈ C(Y ) = C(X�

(2)) holds because t = X�
(2)b1(b

�
1 b1)

−1.
Let us now consider a situation in which multiple components are removed in a

single step. Without loss of generality, we may permute the columns of the component
matrices such that their first G columns represent the signatures of the components
selected for removal. In this case, matrix B can be divided into the following two
parts:

B = (Bout Bin), Bout = (b1 . . . bG) ∈ R
J×G, Bin = (bG+1 . . . bF ) ∈ R

J×(F−G).

The corresponding projection matrix is given by

QB = (IJ − Bout (B
�
out Bout )

−1B�
out )

�.

Therefore, we can express

X�
new(2) = X�

(2)Q
�
B = X�

(2)(IJ − Bout (B
�
out Bout )

−1B�
out )

�

= X�
(2) − X�

(2)Bout (B
�
out Bout )

−1B�
out = Y −

G∑

l=1

tlp�
l ,

where Y = X�
(2), tl = X�

(2)Bout (B�
out Bout )

−1el and pl is the lth column of Bout ,
l = 1 . . . ,G. This is also in line with the assumptions and deflationmodel of Camacho
et al. (2021).

A similar situation arises when projecting to the nullspace of the space spanned by
the mode-3 signatures represented by the columns of matrix C from the CP model
(5). In this case, Y = X�

(3), where N = I J and M = K . Finally, Y = X�
(1) ∈ R

J K×I

with N = J K and M = I for projection to the nullspace of the space spanned by the
mode-1 signatures.

3.2 Component subtraction

Let S denotes an index set of components selected for removal. Component subtraction
follows the formula:

Xnew = X −
∑

f ∈S
λsa f ◦ b f ◦ c f .

123



Deflation properties in tensor-based eye blink removal algorithm Page 9 of 25    91 

First, we consider subtraction of a single component with the signatures
as,bs, cs, s ∈ {1, . . . , F}. This operation can be expressed in the matricized form
as

Xnew = X − λsas ◦ bs ◦ cs →
X�
new(1) = X�

(1) − λs (cs ⊗ bs) a�
s

X�
new(2) = X�

(2) − λs (as ⊗ cs)b�
s

X�
new(3) = X�

(3) − λs (bs ⊗ as) c�
s

⎫
⎪⎪⎬

⎪⎪⎭
= Y − tp�.

(10)

That is, component subtraction adheres to the deflation scheme in Camacho et al.
(2021).

In contrast to projection deflation, where the vector t is expressed as a linear com-
bination of X�

(1), X
�
(2) or X�

(3) columns, t is equal to the Kronecker product of the
signatures from the two modes in component subtraction. For example, consider the
matricization in the second mode, where Y = X�

(2), p = bs , and t = λs(as ⊗ cs).

Therefore, component subtraction does not ensure that t belongs to C(X�
(2)).

Theoretically, it is possible to test whether t ∈ C(X�
(2)) and to compute the amount

of spurious artefacts if t /∈ C(X�
(2)), using the theoretical results for p in a transposed

version of the model. However, as demonstrated in Sect. 5, this may present significant
challenges in real-world data situations. For example, when calculating PercA for
p = bs , matrix O�

n+1On+1 in Eq. (4) is of size J × J . By contrast, if we compute
PercA for t = λs (as ⊗ cs), then O�

n+1On+1 ∈ R
I K×I K . Suppose I and K are at

most in hundreds. In this case, I K may be in thousands or tens of thousands, and
computing PercA for t on a standard computer is either computationally infeasible
or numerically unstable owing to its high dimensionality.

4 EEG tensor data

4.1 Eye blink corrupted EEG data

In this study, we used real EEG datasets contaminated with eye blinks from Rošťáková
et al. (2025). For a detailed description, please refer to the original article and the
references therein.

Dataset 1 consisted of 11 EEG recordings from three healthy male volunteers
measured under eyes-open condition before, during, and after meditation. Each EEG
recording lasted approximately one minute before (SubId_pre) and after (SubId_post)
meditation, and several minutes during meditation (SubId_med),3 where I d denotes
volunteer identifier (1, 2, or 3) (Rošťáková et al. 2025).

Dataset 2 included data for 45 subjects from the OSF EEG eye artefact dataset,
which is publicly available at https://osf.io/2qgrd/.

EEG data analysis can be divided into three parts:

3 Subject 1 took part in three separate meditation sessions denoted here as Sub1_med1, Sub1_med2,
Sub1_med3.
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Tensor construction and preprocessing For each subject from both datasets, the EEG
signal can be represented by a matrix XEEG ∈ R

L×J , where J is the number of
electrodes, and L = S f × T is the number of time points at which the EEG signal is
recorded. The sampling frequency in Hertz (the number of points recorded per second)
is denoted by S f , and T represents the duration of the recording time interval in sec-
onds. The tensor construction and preprocessing were performed using the following
steps in MATLAB® (The Mathworks, Inc. 2021):

1. Tensor construction The EEG signal is divided into overlapping time windows
for each electrode separately. In line with Rošťáková et al. (2025), we used 0.5-
second time windows with a 0.4-s overlap. Additionally, for each electrode and
timewindow separately, the frequency spectrum is computed using the Fast Fourier
Transform (FFT). The resulting amplitude spectra are concatenated into a tensor
Xraw ∈ R

I×J×K where:

• I is the number of time windows equal to

I =
⌊

L − winLen × S f

winLen × S f − ⌊
winOverlap × S f

⌋
⌋

,

where winLen is the time window length, and winOverlap is the length of
overlap, both in seconds. For example, for a one-minute EEG signal measured
with S f = 128 Hz, divided into 0.5-second time windows with a 0.4-second

overlap, the number of time windows is I =
⌊

60×128−0.5×128
0.5×128−�0.4×128�

⌋
= 585.

• K is the number of frequency points in which the spectrum was computed.
According to the Nyquist theorem, we can compute the frequency spectrum up
to

S f
2 Hz with a resolution of 1

winLen Hz. However, focusing only on a specific
frequency range is often helpful. For example, we considered the frequency
interval 0–30 Hz with a resolution of 2 Hz (winLen = 0.5), giving K =
30 − 0

2
+ 1 = 16.

• J represents the number of electrodes. Originally, the EEG signal was recorded
by 64 electrodes. However, using the information from all 64 electrodes would
lead to the situation M ≤ N for EEG recordings shorter than 1.7min. 4

Consequently, PercA equals zero by default in all the deflation approaches
considered, as explained in Sect. 2.2, for half of our data. To be consistent
across all datasets and subjects, we used only 19 electrodes as in Rošťáková
et al. (2025), allowing us to assess the proportion of new variability introduced
by deflation through PercA.

2. The logarithmic transform Once Xraw is constructed, the element-wise log10-
transform is applied, resulting in the tensor

X = log10(Xraw + 1).

4 EEG recording lasting 102s (1.7min) results in M = I = 999. If J = 64 and K = 16, then N = J K =
64.16 = 1024, so M < N .
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Two main reasons exist for this transformation. First, previous studies have shown
interpretational and computational advantages of using the log-transformed tensor
over the raw tensor in detecting EEG oscillatory rhythms (Rošťáková et al. 2020;
Rosipal et al. 2022).
The second, and more significant, reason is discussed in Rošťáková et al. (2025),
and we will only touch upon it briefly here. Tensor Xraw is nonnegative; however,
as demonstrated in Rošťáková et al. (2025), any deflation approach may introduce
negative values. Consequently, the resulting tensor cannot represent the spectrumof
the artefact-free EEG signal.Moreover, the algorithm used to transform the cleaned
tensor back into a signal is not equipped to handle negative values (Rošťáková et al.
2025). Nevertheless, this issue can be effectively addressed by employing the log-
transformed tensor instead of the original. After performing CP decomposition and
deflation, we can apply an inverse transformation (10X , element-wise) to ensure
that the resulting tensor remains nonnegative (Rošťáková et al. 2025).
Notably, in this study, the inverse transformation is not applied, as our interest lies
solely in the deflated tensor itself, and transforming it back into an EEG signal is
not necessary.

3. Centring Before applying PCA or CP, centring the data is recommended. Tensor
centring can be performed in one or multiple modes simultaneously. However, Bro
(1997) recommends centring across a single mode at a time. In our previous studies
(Rošťáková et al. 2020; Rosipal et al. 2022), we preferred centring across the first
(temporal) mode:

Xc
i jk = Xi jk − 1

I

I∑

s=1

Xsjk . (11)

CP decomposition and deflation

1. CP decomposition The CP decomposition with the nonnegativity constraints in
all three modes was applied to the tensor Xc for each subject separately, with
the number of components F determined by the tripleC algorithm (Rošťáková
and Rosipal 2022). In this study, CP decomposition was always performed on the
centred tensor Xc. The interaction between tensor centring and deflation will be
further explored in Sect. 4.3.

2. Component selectionLatent componentswere automatically inspected for eye blink
characteristics like in Rošťáková et al. (2025), followed by manual selection if
necessary. Selected components were labeled as artefactual.

3. Deflation For each subject, component deflation was performed using either com-
ponent subtraction or projection to the nullspace of the space spanned by the (i)
mode-1, (ii) mode-2, or (iii) mode-3 signatures. Moreover, either

• a single artefactual component with the highest weight (corresponding λ from
the mixing tensor �) was used in the deflation step, or

• all components labelled as artefactual were removed during deflation.
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Evaluation of the deflation effect

1. CP decomposition of deflated data The second CP decomposition was performed
on the deflated tensor, with the number of components set to

Fnew = F − number of removed artefactual components.

If Fnew = 0, the second CP decomposition was not performed, and the
corresponding subject was removed from the analysis.

2. Proportion of new variance introduced by the deflation The newly estimated latent
componentswere examined to determine the percentage of variability introducedby
the deflation procedures. Camacho et al. (2021) assumed that deflation significantly
impacts data variability if PercA is above 20%.

4.2 Simulated EEG data

In addition to real-world datasets, we analysed a simulated dataset fromRošťáková and
Rosipal (2022). Although this dataset does not specifically involve eye-blink artefacts,
it closely mimics the properties of real EEG signal for 50 “subjects”. Furthermore,
the known underlying structure allows for a direct assessment of deflation impact
by evaluating whether the true remaining components are accurately revealed after
deflation, or if any artefactual components are introduced.

The simulated EEG data included four oscillatory rhythms: a 5 Hz rhythm located
in the frontal region, two sensorimotor rhythms oscillating at 8 Hz and 14 Hz in the
central region symmetrically across both hemispheres, and an occipital alpha rhythm
at 11 Hz. Additionally, the data included broadband brain activity (BBA), simulated
as fractional Brownian motion with the Hurst exponent H = 0.6. In contrast to
Rošťáková and Rosipal (2022), only simulated data with low level of BBA were used
in this study.5 The simulated EEG data were generated as if they were recorded with
64 electrodes over a one-minute time interval with a sampling frequency of 256 Hz.
For more details on the data generation, see Rošťáková and Rosipal (2022).

Tensor construction and preprocessing, nonnegative CP decomposition, and defla-
tion were performed exactly as in the case of the real data. The only difference was
segmenting the EEG signal into two-second time windows with a 1.9-second overlap
and focusing on the frequency interval of 4–25 Hz. In the CP decomposition, the non-
negativity in the frequency mode was combined with unimodality constraints because
of the focus on narrowband simulated oscillatory rhythms instead of broadband eye
blinks.

Tensor X had dimensions I × J × K , where I = 571, J = 64, and K = 43. All
three matricized versions of the tensor satisfied the condition M < N from Camacho
et al. (2021):

5 The amplitude of BBA was modulated such that the ratio between the amplitude of BBA and target
oscillations was 0.2 (Rošťáková and Rosipal 2022).
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N M M < N

X�
(1) ∈ R

J K×I J K = 2752, I = 571 → I < J K ,

X�
(2) ∈ R

I K×J I K = 24553, J = 64 → J < I K ,

X�
(2) ∈ R

I J×K I J = 36544, K = 43 → K < I J .

Because of the presence of BBA, matricized versions of the tensor were of full rank,
resulting in PercA ≈ 0. This implies that the effect of component deflation is not
measurable using PercA in this case.

Nevertheless, we aimed to demonstrate the effect of deflation on both the uncentered
and centred tensors from a different perspective. First, we applied the CP decompo-
sition to the data and extracted four latent components. Next, the 11 Hz component
(if present) was removed from both the uncentered and centred tensors by either com-
ponent subtraction or projection to the nullspace of the space spanned by selected
signatures in a given mode. Finally, a second CP decomposition was applied to the
deflated tensor. Ideally, the three detected latent components should represent oscilla-
tory rhythms at 5, 8, and 14 Hz, respectively. However, this was not always the case
for all subjects. Therefore, we focused on the proportion of participants for whom:

• the 11 Hz rhythm remained detectable after deflation, and
• only the 5, 8, and 14 Hz oscillations were identified after the second CP.

This procedure was repeated, replacing the 11 Hz rhythm with an 8 Hz or 14 Hz
oscillation in the deflation step.

4.3 Component removal from centred and uncentered tensor

In the previous sections, we introduced two component deflation procedures. However,
an important question arises: should deflation be applied to the original tensor X or
its centred version Xc, given that the components were estimated from the centred
tensor?

To address this issue, we examined tensor centring inmore details.Whenwe rewrite
the centring across the first mode (11) in matrix form using X�

(1), we arrive at the
following model:

Xc
(1)

� = X�
(1) − 1

I
X�

(1)1I1
�
I = X�

(1)(II − 1

I
1I1�

I ). (12)

The matrix II − 1
I 1I1

�
I is a projection matrix, implying that centring across the first

mode can be understood as a projection in the first mode that removes the influence
of the “baseline” vector 1I . Furthermore, the centring process across the first mode,
as expressed in Eq. (12), also follows the deflation model Y − tp� where

Y = X�
(1), t = 1

I
X�

(1)1I and p = 1I .
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In other words, centring across the first mode is also a form of deflation. Moreover,
t ∈ C(X�

(1)), as in Camacho et al. (2021).
Therefore, we considered two cases when analysing the impact of deflation on both

real and simulated EEG data:

• Case 1: deflation applied to the original tensor X , i.e.,

X�
new(1) = X�

(1) − tp�.

• Case 2: deflation applied to the centred tensor Xc, i.e.,

X�
new(1) = Xc

(1)
� − tp� = X�

(1) − 1

I
X�

(1)1I1
�
I − tp�.

The vectors t,p in deflation have the same meaning as those in the previous sections.
Case 2 can be viewed as deflation applied to Xc. However, Camacho et al. (2021)

assumed that Y1 was of full rank. When I < J K (i.e. M ≤ N ), the rank of X(1) is
I , whereas the rank of the centred tensor Xc

(1) is I − 1. Consequently, if we denote

Y1 = Xc
(1)

�, the PercA values will be nonzero even in the case I < J K because

C(Xc
(1)

�) ⊂ R
I .

Therefore,weprefer the second interpretation ofCase 2 as two consecutive deflation
steps applied to the original tensor X . In Eq. (4),Y�

1 always corresponds to amatricized
versions of the original, uncentered tensor X .

Finally, we would like to highlight that for each subject, component deflation was
performed on both the uncentered and centred versions of the tensor (Case 1/Case
2) using either component subtraction, or projection to the nullspace of the space
spanned by the (i) mode-1, (ii) mode-2, and (iii) mode-3 signatures. As described in
Sect. 4.1, either a single artefactual componentwith the highestweight or all artefactual
components were removed during deflation. The analysis resulted in 2×4×2 different
scenarios.

5 Results

5.1 Eye blink corrupted EEG data

In the first step, we focused on the projection to the nullspace of the space spanned
by the mode-2 signatures. In this case, Y = X�

(2) ∈ R
I K×J , where N = I K and

M = J in the model of Camacho et al. (2021). As highlighted in Sect. 4.1, J = 19
is much smaller than the number of time windows I in both of our EEG datasets (and
also in EEG in general). Consequently, J < I K leads to the first scenario (M ≤ N )
described by Camacho et al. (2021), and the PercA values are theoretically expected
to be zero in this case.

A similar situation also occurs for the projection to the nullspace of the space
spanned by the mode-3 signatures. Because Y = X�

(3) ∈ R
I J×K and K = 16, we are

also in the scenario M ≤ N with N = I J and M = K . Again, the corresponding
PercA values are expected to be zero.
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These theoretical expectations were satisfied for both the real-world datasets. For
both mode-2 andmode-3 projection deflations, the PercA values for all the remaining
latent components across subjects ranged from 10−26 to 10−23, which was effectively
zero because of the numerical precision of MATLAB. We hypothesise that these neg-
ligible deviations from zero are due to numerical inaccuracies in the Moore–Penrose
pseudoinverse. Near-zero values were consistently observed across all scenarios and
subjects, including bothCase 1 andCase 2, andwith the removal of a single component
or multiple components.

A different situation occurred when considering projection to the nullspace of the
space spanned by mode-1 signatures. In this case, Y = X�

(1) ∈ R
J K×I and X(1) is

of full rank due to the presence of noise in the real data. Now, we are in the situation
N < M because N = J K = 19 × 16 and the shortest EEG recording in our datasets
exceeded one minute producing M = I > 500. In other words, the diagnostic tools
from Camacho et al. (2021) can be used to evaluate the impact of deflation.

Projection to the nullspace of the space spanned by mode-1 signatures and com-
ponent subtraction yielded similar results (Figs. 1 and 2). Let us first consider Case
1, in which the deflation step was applied to an uncentered tensor. As depicted in
Fig. 1 (first rows, right), PercA values were low for the majority of components and
subjects, with a maximum of 3.21% in Dataset 1 and 1.62% in Dataset 2 when a
single component was subtracted. In contrast, the mode-1 projection deflation of a
single component (Fig. 1, first rows, left) resulted in higher maximum PercA values
of 12.85% in Dataset 1 and 6.33% in Dataset 2. Similar outcomes were observed when
more than one component was removed during deflation (Fig. 2).

Overall, the mode-1 projection led to slightly higher PercA values than the com-
ponent subtraction inCase 1 (Figs. 1 and 2, first rows). Nevertheless, for both deflation
methods, the PercA values remained below the threshold of 20% when either single
or multiple components were removed in a single step. In accordance with Camacho
et al. (2021), this indicates that the proportion of the variance introduced by deflation
was negligible.

A different situation occurred in Case 2, in which the PercA values were signifi-
cantly higher for both datasets, as confirmed by the Wilcoxon signed-rank test. This
was true for both mode-1 projection and component subtraction compared to Case 1.
InCase 2, the maximum PercA reached 27.26% in Dataset 1 and 31.35% in Dataset 2
after subtracting a single component using the component subtraction method. For the
mode-1 projection, the PercA values were even higher, peaking at 31.84% for Dataset
1 and 37.66% for Dataset 2 (Fig. 1, second rows). Removing multiple components in
a single deflation step in Case 2, either by component subtraction or mode-1 projec-
tion, resulted in slightly higher PercA values than when only a single component was
deflated.

Moreover, PercA for several components exceeded the 20% threshold in both
deflation procedures in Case 2. Following Camacho et al. (2021), this indicates that
the proportion of variance introduced by component subtraction andmode-1 projection
to the centred tensor is not negligible, and that the components estimated after deflation
may represent spurious artefacts rather than the original data structure.

In line with Sect. 3.2, our goal was to compute PercA for vector t in the context of
component subtraction. Owing to dimensionality constraints, we could only conduct
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Fig. 1 Single component deflation. The percentage of variance (PercA, black circles) in the latent compo-
nents that does not correspond to the original data but was introduced by (i) mode-1 projection (left), and
(ii) component subtraction (right) applied to both uncentered (Case 1) and centred versions of the tensor
(Case 2) in Datasets 1 and 2. During the deflation step, only the dominant eye blink-related component was
removed. If multiple components remained after deflation for a given subject, their corresponding PercA
values are displayed stacked vertically

this analysis on a subset of shorter EEG recordings from Dataset 1 (6–7 subjects),
utilising a standard computer (OS X, Apple M1 chip, 16 GB of memory).

When considering the component subtraction expressed bymatricization in the first
mode, we have t = (cs ⊗ bs) and Y = X(1) ∈ R

I×J K , where N = I and M = J K .
In this case, “M ≤ N”, leading to PercA = 0.

Formatricization in the secondmode, we get t = (as ⊗ cs) andY = X(2) ∈ R
J×I K

where J < I K in our EEG data, indicating the scenario of “N < M”. In this case,
all the subjects exhibited PercA values below 2.5% when component subtraction
was performed on an uncentered tensor X . By contrast, for the centred tensor Xc, the
PercA values were generally higher, exceeding the threshold of 20% in several cases.
In addition, similar PercA values for t = (bs ⊗ as) were obtained when considering
the matricization in the third mode for component subtraction.

123



Deflation properties in tensor-based eye blink removal algorithm Page 17 of 25    91 

Fig. 2 Multiple components deflation. The percentage of variance (PercA, black circles) in the latent
components that does not correspond to the original data but was introduced by (i) mode-1 projection (left)
and (ii) component subtraction (right) applied to both uncentered (Case 1) and centred versions of the
tensor (Case 2) in Datasets 1 and 2. During the deflation step, all selected eye blink-related components
were removed. If multiple components remained after deflation for a given subject, their corresponding
PercA values are displayed stacked vertically

5.2 Simulated data

As an initial step, CP decomposition with four components was applied separately
to the simulated EEG data of all 50 subjects. The 11 Hz rhythm was identified in 41
cases (Table 1, upper part).

When applying component subtraction to the uncentered tensor (Case 1), the sub-
sequent CP decomposition revealed only three true rhythms (5, 8, and 14 Hz) in 39
subjects, indicating that the 11 Hz rhythm was successfully eliminated. In one sub-
ject, the 11 Hz rhythm was still detected after the second CP decomposition (Table 1),
whereas in another subject, the secondCP decomposition revealed spurious oscillation
in place of the true rhythms.
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In Case 2, the 11 Hz oscillation was deflated from the centred tensor. Following
component subtraction, we observed that in 20 subjects (49%), the 11 Hz rhythm
remained present and was once again detected by the second CP decomposition (Table
1). The true three remaining components were identified in 17 subjects (41%). In the
remaining four cases, component subtraction successfully removed the 11 Hz rhythm;
however, the second CP decomposition detected one or more artificial oscillations
instead of the true ones.

Regarding mode-1, mode-2, or mode-3 projection deflation, the 11 Hz rhythm was
completely eliminated in all 41 subjects. The number of subjects in whom the three
remaining rhythms were detected by the second CP decomposition ranged from 32
(78%) to 39 (95%) (Table 1). In contrast to component subtraction, the projections
applied to the centred and uncentered tensors produced qualitatively similar results.

A different scenario occurred when the 14 Hz or 8 Hz oscillatory rhythm was
removed during the deflation step. The 14 Hz component was detected in 49 of the
50 subjects (Table 1). However, component subtraction did not fully eliminated the
influence of the 14 Hz rhythm. The following CP decomposition detected a 14 Hz
component in all 49 subjects when component subtraction was applied to the uncen-
tered tensor (Case 1) and in 42 subjects when the 14 Hz rhythm was subtracted from
the centred tensor (Case 2). Similarly, the 8 Hz rhythm was identified in all 50 sub-
jects, yet remained detectable by the second CP decomposition in 49 subjects after
its subtraction from both the centred and uncentered tensors. From this perspective,
component subtraction was not able to eliminate the selected oscillatory components
completely.

In contrast, projection deflation of the 14 Hz rhythm led to its successful removal
because it was not identified in any subject by the second CP decomposition (Table 1).
The true 5, 8, and 11 Hz components were detected in 40 subjects when the projection
to the nullspace of the space spanned by mode-1 or mode-3 14 Hz signatures was
applied to the centred tensor (Case 2, Table 1). In Case 1, the three true rhythms were
detected in 48 subjects (mode-1 projection) and 45 subjects (mode-3 projection). As
depicted in Table 1, mode-2 projection exhibits inferior results, where the three true
rhythms were detected in 13 subjects in Case 1 and 11 subjects in Case 2.

Projection deflation successfully removed the 8 Hz rhythm in most subjects, as the
second CP decomposition identified the 8 Hz component in at most one subject (for
mode-1 and mode-2 projections). The three remaining true components (5, 11, and
14 Hz) were detected in 41 or 45 subjects in Case 1 and 42 subjects in Case 2 when
consideringmode-1 andmode-3 projection deflation. Once again, inferior results were
observed for mode-2 deflation, where three true rhythms were detected in only four
subjects in Case 1 and seven subjects in Case 2.

6 Discussion

Component deflation plays a crucial role inmatrix decomposition, particularly in latent
component estimation. However, only a limited number of studies have addressed
component deflation in tensor data (Acar et al. 2007; Rošťáková et al. 2025), and
none have examined the potential side effects of deflation, namely, the introduction
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of spurious artefacts. The primary objective of this study was to address this gap by
analysing the presence of spurious artefacts that may arise from deflation following
CP decomposition with nonnegativity or unimodality constraints. We focused on two
deflation schemes: projection to the nullspace of the space spannedbymode-1,mode-2,
or mode-3 signatures and component subtraction.

In sparse PCA or other constrained matrix decomposition models, the column and
row spaces of matrix Y , from which the latent components are deflated, played an
important role (Camacho et al. 2021). We defined similar “tensor fibre spaces” for
tensor-based models such as CP and attempted to adapt the ideas from Camacho
et al. (2021). However, as described in Appendix A, the proposed tensor fibre spaces
exhibit different properties compared to the row or column space of a matrix, leading
to different conclusions from those in Camacho et al. (2021). Due to these obstacles,
our research did not follow the path of tensor fibre spaces.

Fortunately, each tensor decomposition model can be reformulated using various
matricized forms. Consequently, the ideas and conclusions presented by Camacho
et al. (2021) can be directly applied or easily adapted, as demonstrated in Sect. 3.
Moreover, the PercA metric proposed in Camacho et al. (2021), as the proportion of
artefacts introduced during the deflation step, is also applicable in the tensor case.

The theoretical results presented in Sect. 3 were applied to the real and simulated
EEGdata.Our focus onEEGdata stems from its significance in our long-term research.
Moreover, the aforementioned studies addressed deflation within the context of EEG
tensor data. Nevertheless, the derived theoretical results are general and can easily be
adapted to any real tensor data problem involving component deflation.

In line with the theoretical results, mode-2 and mode-3 projection deflation pro-
duced near-zero PercA values in all examined real and simulated EEG data scenarios.
Consequently, these two deflation methods may still introduce some artefacts. How-
ever, their influence remains undetectable by the PercA measure, not only in our
data but also in EEG data in general. This is because the number of electrodes or fre-
quencies considered is often significantly lower than the product of the remaining two
tensor dimensions. Consequently, the side effect of deflation can only be assessed for
projection to the nullspace of the space spanned by mode-1 signatures and component
subtraction.

As centring the tensor data before CP decomposition is generally recommended
(Bro 1997), we analysed both situations in which deflation was applied to both cen-
tred and uncentered tensors. The proportion of the variance introduced by deflation
remained below20%when the procedurewas applied to an uncentered tensor (Case 1).
Moreover, the PercA values were nearly zero when considering component subtrac-
tion fromanuncentered tensor. In contrast,mode-1 projection deflation and component
subtraction applied to the centred tensor (Case 2) resulted in significantly higher
PercA values above 20%.

As discussed in Sect. 4.3, the deflation applied to the centred tensor can be inter-
preted as two consecutive deflation steps on the uncentered tensor. Consequently, the
higher PercA values in Case 2 are consistent with the observations of Camacho et al.
(2021), where PercA values increased with the number of deflation steps, as the
variance introduced by component removal accumulates.
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Based on these observations, and in line with the results of Camacho et al. (2021),
we prefer performing deflation on the original uncentered tensor (when possible), as
the impact of the introduced spurious artefacts is negligible compared to the deflation
applied to the centred tensor.

These conclusions were further validated by analysing of simulated data. When
the 11 Hz component was subtracted from the uncentered tensor, subsequent CP
decomposition did not detect this rhythm in most subjects. In contrast, the 11 Hz
rhythm remained detectable in nearly half of the subjects when subtracted from the
centred tensor.

The inability of component subtraction to entirely remove the influence of 8 or
14 Hz rhythms in the simulated data, whether applied to the centred or uncentered
tensor, could be attributed to how the data were simulated. The 8 and 14 Hz oscilla-
tory rhythms were simulated near each other in the central region in both hemispheres.
Consequently, some spatial information related to the 8 Hz rhythmmay still be present
in the detected 14Hz component, preventing component subtraction from fully remov-
ing it. The results of projection deflation also support this idea. As highlighted in Sect.
3.1, projection deflation not only removes the selected component(s) but also elimi-
nates related information from the signatures of the remaining components. Following
projection deflation, the subsequent CP decomposition detected residual information
about the removed 8 or 14 Hz rhythm in a single subject.

However, this property of projection deflation can be a “double-edged sword”. Due
to the spatial proximity of the 8 and 14 Hz rhythms, mode-2 projection of one rhythm
effectively “removed” both rhythms in most subjects. Consequently, the three true
remaining rhythms were detected in, at most, 13 out of 50 subjects. In other words, if
the estimated components are correlated in one signature, projection deflation in that
mode may eliminate not only the selected component but also a substantial amount of
the remaining relevant information. This finding is consistent with the results of our
previous study (Rošťáková et al. 2025), where mode-2 deflation resulted in a “clean”
EEG signal with near-zero values and missing neurophysiological interpretation.

Although we identified scenarios in which the side effects of deflation were negligi-
ble in the EEGdata case, theremay be real data problems beyondEEG,where deflation
significantly contaminates the data, as indicated by high PercA values. In such cases,
what should be done? First, caution must be exercised when interpreting the results of
the subsequent tensor decomposition. The introduction of artefacts through deflation
in the matrix decomposition can be effectively addressed by considering component
orthogonalization, as demonstrated by Witten et al. (2009). As discussed in Sect. 3,
the CP model can be easily represented in various matrix forms. Therefore, the results
ofWitten et al. (2009) can be adapted to this case provided that the nature of the tensor
data allows for orthogonality.

7 Conclusion

In conclusion, one must be careful when deflating the latent components from ten-
sor data under non-orthogonality constraints. This is a critical point because many
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researchers outside the mathematics field, but dealing with real data, may not recog-
nise this issue. Although our findings were demonstrated in the specific context of real
and simulated EEG data, the derived mathematical formulas can be applied in a more
general context.

Our analysis revealed that the deflation applied to the uncentered tensor yielded
better results than deflation applied to the centred tensor. Consistentwith the findings of
Rošťáková et al. (2025), we prefer component subtraction to projection to the nullspace
of the space spanned by signatures in a given mode.

The most challenging scenario occurs when attempting to remove the effect of
a latent component whose signatures are highly correlated with those of the other
components in at least onemode. Although component subtraction could not eliminate
the selected component in our simulated data example, projection deflation removed
too much relevant information along with the deflated component.

Although this study addressed several questions regarding the properties of deflation
in tensor models, there is still room for further research focusing on other tensor
decomposition or deflation approaches.

Appendix A: Definition of “tensor fibre spaces”

This study analysed the theoretical properties of two deflation techniques using the
ideas from Camacho et al. (2021) because each tensor model can be rewritten in a
matricized form. However, the question remains whether building a similar theory
directly for tensors is possible.

The central concept of Camacho et al. (2021) is the analysis of matrix column and
row spaces. Based on (1) and (2), a natural definition of the mode-1, mode-2 and
mode-3 “fibre” spaces of a tensor X follows the formulas:

C1(X) = {x ∈ R
I : x = X ×2 x2 ×3 x3; x2 ∈ R

J , x3 ∈ R
K },

C2(X) = {y ∈ R
J : y = X ×1 y1 ×3 y3; y1 ∈ R

I , y3 ∈ R
K },

C3(X) = {z ∈ R
K : z = X ×1 z1 ×2 z2; z1 ∈ R

I , z2 ∈ R
J }.

From the first point of view, the following procedure appears similar to the matrix
case: following Camacho et al. (2021), we analyse whether vectors p, t (signatures
of a component selected for removal) belong to the appropriate tensor fibre space.
However, deeper analysis revealed several obstacles.

Let us focus on C1
(
X

)
; the situation with C2

(
X

)
and C3

(
X

)
is analogous. Using

the properties of the tensor-matrix product, the formula x = X ×2 x2 ×3 x3 can be
equivalently rewritten as

x = X(1) (x3 ⊗ x2)� , x2 ∈ R
J , x3 ∈ R

K .

By contrast, C
(
X(1)

)
is a set of all vectors x ∈ R

I which can be expressed as

x = X(1)q, q ∈ R
J K .
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Consequently, C1
(
X

) ⊂ C
(
X(1)

)
because vector q can be an arbitrary vector of the

length J K from the definition of C
(
X(1)

)
, but it has to have the form of a Kronecker

product of two vectors in C1
(
X

)
.

Now, let us focus on the way the component matrix A is estimated. In Sect. 2.3, we
described the ALS approach, in which two component matrices are considered fixed,
and the third one is estimated using ordinary least squares:

Â = X(1) (C � B)��
(
�� (C � B)� (C � B) ��

)−1
.

However, more than the entire estimator, we are interested in the expression of the f th
column of A

â f = X(1) (C � B) ��
(
�� (C � B)� (C � B)

)−1
e f = X(1)qa f .

Thus, a f ∈ C
(
X(1)

)
. However, a f does not belong to C1

(
X

)
because qa f is gener-

ally not expressed as a Kronecker product. The only exception is when C and B have
orthogonal columns. However, as highlighted in our previous studies, the orthogonal-
ity assumption misses the neurophysiological interpretation in EEG data. Moreover,
if a f /∈ C1

(
X

)
under ordinary least squares, it does not belong to C1

(
X

)
when

considering nonnegativity or unimodality constraints.
The PercA formula has the same structure for both C

(
X(1)

)
and C1

(
X

)
. Conse-

quently, it produces values close to zero for a f /∈ C1
(
X

)
, which contrasts with the use

of this metric. Therefore, our research did not follow the path of tensor fibre spaces.
Instead, we focused on the matricized versions of the CP model and worked directly
with the corresponding matrix column and row spaces.

Acknowledgements This research was funded by the EU NextGenerationEU through the Recovery and
Resilience Plan for Slovakia under the project No. 09I03-03-V04-00205 (Z.R.) and project No. 09I03-03-
V04-00443 (R.R).
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