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Abstract 
Mental fatigue was associated with increased power in frontal theta (θ) and parietal alpha (α) EEG 
rhythms. A statistical classifier can use these effects to model EEG-fatigue relationships accurately. 
Participants (n = 22) solved math problems on a computer until either they felt exhausted or 3 h 
had elapsed. Pre- and post-task mood scales showed that fatigue increased and energy decreased. 
Mean response times rose from 6.7 s to 7.9 s but accuracy did not change significantly. Mean pow-
er spectral densities or PSDs of θ and α bands rose by 29% and 44%, respectively. A kernel partial 
least squares classifier trained to classify PSD coefficients (1 - 18 Hz) of single 13-s EEG segments 
from alert or fatigued task periods was 91% to 100% accurate. For EEG segments from other task 
periods, the classifier outputs tracked the time course of the development of mental fatigue. By 
this measure, most subjects became substantially fatigued after 60 min of task performance. 
However, the trajectories of individual classifier outputs showed that EEG signs of developing fa-
tigue were present in all subjects after 15 - 30 minutes of task performance. The results show that 
EEG can track the development of mental fatigue over time with accurate updates on a time scale a 
short as 13 seconds. In addition, the results agree with the notion that growing mental fatigue 
produces a shift away from executive and attention networks to default mode and is accompanied 
by a shift in alpha frequency to the lower alpha band. 
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1. Introduction 
The purpose of this study was two-fold: a) to identify the features of the electroencephalogram or EEG that 
change in an orderly and reliable manner with the development of mental fatigue; and b) to construct a practical 
system that can use EEG features to accurately estimate the instantaneous degree of mental fatigue over a per-
formance period of up to three hours. Our approach consisted of five key steps. First, we adopted a clinical- 
theoretical framework that allowed us to distinguish mental fatigue from general fatigue, sleepiness or other 
factors that influence task performance. Second, we adopted a task and a set of procedures for inducing mental 
fatigue in the participants of the study. Third, we adopted psychometric tests that can independently validate the 
ability of the task to induce mental fatigue. Fourth, we selected an EEG measurement system that is practical 
enough to use in operational settings and sensitive enough to detect changes in EEG features with the develop-
ment of fatigue. Finally, we adapted an algorithm for estimation of mental fatigue from EEG features that is ro-
bust in the face of signal corruption from noise or sensor loss and accurate enough to classify states of mental 
fatigue in individual human subjects with a few seconds of EEG recordings. 

There are countless occupations today in which fatigued individuals routinely operate complex, high-risk sys-
tems. Such systems may be as common as driving a car or operating a forklift, or as rare as controlling traffic at 
a busy airport or docking two spacecraft in orbit. This undesirable state of affairs has contributed to many well 
publicized—and some not so well publicized—disasters. For example, operator fatigue was involved in the 
Three-Mile Island and Chernobyl nuclear power plant disasters, the EXXON Valdez grounding, and the Guan- 
tanamo Bay airline crash (U.S. Congress, Office of Technology Assessment, 1991; Hall, 2000; Dinges, 1995). 
“There is [also] much evidence that [operator] fatigue has contributed to serious incidents and accidents in in-
dustrial operations … and to accidents in all [emphasis added] modes of transportation” (Dinges, 1995: p. 8). 
Analyses of crash data confirm that fatigue, drowsiness and inattention pose the greatest known risks to auto-
mobile driver and passenger safety, surpassing all other known risks including alcohol use and secondary tasks 
such as cell phone usage (Dingus et al., 2006; Sagberg et al., 2004). Accordingly, there continues to be much 
scientific interest in assessing, monitoring, and predicting operator fatigue (Gevins et al., 1995; Kennedy, 1953; 
Wilson & Fisher, 1991; 1995; Russo, Stetz, & Thomas, 2005). 

Unfortunately, there is no standard definition of fatigue. Clinically, fatigue is best defined as difficulty in per-
forming voluntary activities (Chaudhuri & Behan, 2004). The main psychological symptoms are subjective 
feelings of low energy and motivation, which may be accompanied by physical weakness. Drowsiness aside, fa-
tigue is still a broad concept, which includes mental, motor, metabolic, endocrine, sensory, and other physiolog-
ical or environmental components (Chaudhuri & Behan, 2004; Winningham, 1996). We prefer the point of view 
that fatigue is distinct from drowsiness, or the feeling of a need to sleep, although fatigue and drowsiness are of-
ten felt at the same time (Hurd, 2007). Hockey (2013) considered that mental fatigue arises not so much from 
excessive work and effort as from a lack of motivation to continue tasks that become less and less rewarding 
over time. In this view, fatigue is healthy in the sense that it can help prevent motivational fixation on current 
activities. For example, the onset of fatigue can force a break in attention to a monotonous and unrewarding task, 
and allow a person to weigh the benefit of continuing that task or redirecting behavior towards activities that 
may be more rewarding. Nevertheless, our society often requires people to engage in long-duration tasks with 
low immediate reward value, such as long-haul truck driving, piloting aircraft or various monitoring activities. A 
better understanding of the neurophysiology of alertness-fatigue transitions may aid in task design and analysis. 
Ultimately, knowing precisely what changes in an individual’s EEG during such transitions could be used with 
biofeedback to train operators of fatigue-inducing systems to self-regulate these transitions and avoid accidents 
(e.g., Beatty et al., 1974). 

In the present study, we will attempt to experimentally isolate mental fatigue from general fatigue because 
complex, high-risk tasks such as piloting aircraft and vehicles impose minimal physical demands and heavy cog- 
nitive demands on human operators. In such tasks, mental fatigue jeopardizes performance and safety through a 
variety of cognitive impairments, including: a) decreased vigilance (Mast & Heimstra, 1964; Šípoš, 1971; Smit, 
Eling, & Coenen, 2004); b) decreased secondary task performance (van der Hulst, Meijman, & Rothengatter, 
2001); c) impaired problem solving (Horne, 1988; van der Linden, Frese, & Meijman, 2003; van der Linden, 
Frese, & Sonnentag, 2003); d) reduced situation awareness (Vidulich et al., 1994); and e) decreased tolerance of 
risk and effort (Barth, Holding, & Stamford, 1976; Brown, Tickner, & Simmonds, 1970; Neri, Shappell, & De 
John, 1992; Shingledecker & Holding, 1974). 
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As with all mental states, clinicians and neuroscientists cannot sharply define mental fatigue in terms of spe-
cific physiological processes. So mental fatigue is usually defined as a subjective assessment that is associated 
with various behavioral and physiological symptoms. For example, we can define mental fatigue as the unwil-
lingness of alert, motivated subjects to continue performing a specific mental task (Montgomery, Montgomery, 
& Guisado, 1995). Then at times before, during, or after performance of the task, we can validate this definition 
with psychometric tests. 

Although mental fatigue is currently assessed subjectively, there is a pressing practical need for objective 
measures to estimate, monitor, and predict it. Changes in the EEG clearly signal the onset and stages of sleep, 
but more recent studies have shown that EEG patterns can also signal the onset of mental fatigue in fully awake 
persons. For example, a separate analysis of data from this study found evidence for three statistically separable 
stages of mental fatigue development: an alert state, a “normal” state (neither alert nor fatigued), and a mental 
fatigue state (Trejo et al., 2007). However, despite many studies to date, the EEG signs of fatigue are still not 
sharply defined and using EEG for operational fatigue estimation is still a formidable challenge. 

This state of affairs motivated us to rigorously test the accuracy and robustness of EEG-based estimation of 
mental fatigue. We used a two-pronged approach: first we assessed the common across-subjects pattern of 
changes in power spectral density or PSD of multichannel EEG over extended periods of mental arithmetic per-
formance. Second, we tested the feasibility of using the PSDs of EEG to classify mental fatigue states at a 
sub-minute time scale in individual subjects. More specifically, we trained, cross-validated, and tested statistical 
learning algorithms for classifying brief segments of EEG recordings as pertaining to self-reported states of 
alertness or mental fatigue. 

To assess EEG changes common to all subjects, we tested the hypothesis that the PSDs of theta, alpha, and 
other EEG bands would co-vary regularly with the degree of mental fatigue that subjects experienced. While 
many studies have considered EEG correlates of general fatigue, drowsiness and sleepiness, our study focused 
on inducing mental fatigue through sustained performance of a cognitive task for up to three hours, while mini-
mizing other effects. For example a study of EEG classification of mental fatigue using support vector machines 
from subjects who performed an auditory vigilance task reported classification accuracies ranging from 87.2% 
to 91.2% (Shen et al., 2008). However, these results may have confounded sleepiness and mental fatigue, as the 
subjects had endured 25 hours of sleep deprivation before performing the vigilance task. Other studies lead us to 
expect significant fatigue-related changes in PSDs of the frontal midline theta band and the parietal alpha band 
(e.g., Lorist et al., 2005; Gevins et al., 1998; Barwick et al., 2012). So we specified null hypotheses that EEG 
power in specific theta and alpha bands would remain constant over the course of a fatigue-inducing task. 

To test the feasibility of using EEG to monitor mental fatigue in individuals, we trained a supervised machine 
learning algorithm to extract information-rich features from brief segments of EEG recordings and classify them 
as pertaining to states of alertness or mental fatigue. The algorithm is known as kernel partial least squares or 
KPLS, which we have applied successfully to classification of a wide range of data types including linear and 
nonlinear classification of EEG and event-related potentials (Rosipal & Trejo, 2001; Rosipal et al., 2001; Walle-
rius et al., 2005; Trejo, Matthews, & Rosipal, 2006). The features we extract using KPLS are a set of orthogonal 
basis vectors, which exhibit high covariance with states of alertness or fatigue. Except for this covariance con-
straint the basis vectors are computed using methods similar to those used in principal components analysis or 
factor analysis. We find the necessary and sufficient set of basis vectors using algorithms (de Jong, 1993; Rosip-
al, Trejo, & Matthews, 2003) that extract each vector sequentially, in descending rank of its covariance with an 
output measure, which in this case is a distinction between alertness and fatigue. Each extracted basis vector is a 
unique linear combination of multichannel EEG power spectral densities. We can then iterate this feature extrac-
tion procedure with cross validation methods to optimize the number of extracted components by striking a ro-
bust balance of classification accuracy and generality. We apply the KPLS algorithm in this study to accurately 
and robustly estimate mental fatigue in the framework of developing a useful system for continuous monitoring 
of mental fatigue under working conditions. 

2. Methods 
2.1. Experimental Design 
We tested several hypotheses about the association of subjective moods, observed behavior, performance, and 
physiological measures during continuous performance of mental arithmetic for up to three hours. We manipu-
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lated a single factor, that is, time on task, and used a repeated measures design. Subjective moods were indexed 
by the Activation Deactivation Adjective Checklist (AD-ACL; Thayer, 1986; 1989) and the Visual Analogue 
Mood Scales (VAMS; Stern, 1997) questionnaires. Observed behavior included ratings of activity and alertness 
from videotaped recordings of each participant’s performance. The performance measures were response time 
and response accuracy, recorded in real time by the task computer. The physiological measures were derived 
from spontaneous EEGs, including: a) theta activity (4 - 8 Hz) at Fz (both average power and peak amplitude in 
the theta band) and b) alpha activity (8 - 13 Hz) at Pz (both average power and peak amplitude in the alpha 
band). 

2.2. Participants 
We collected data from 33 individuals from the NASA Ames Research Center community. All participants gave 
their informed consent using a form approved by the NASA Ames Research Center Institutional Review Board 
and were paid for their participation. We report only the data from the 22 participants who met the following in-
clusion criteria: they had to have a) been able to wear an EEG electrode cap without significant discomfort; b) 
stayed awake for at least 90 minutes; c) provided stable EEG recordings within a tolerance of +/− 100 μV. We 
dismissed participants who failed to meet these criteria. Six of the 22 eligible participants were excluded from 
analyses. One was excluded because he violated experimental protocol and wore a watch during the testing, and 
attended to the watch repeatedly. Five more were excluded because their response times were extremely slow 
(and consequently they provided too few EEG epochs for analysis). The remaining 16 participants included 12 
males and 4 females with a mean age of 26.9 (SD = 7.4) years. Also, according to self-reports, all of the partici-
pants had normal vision and hearing. Fourteen of the 16 participants reported being right-handed and two re-
ported being left-handed. 

2.3. Mental Arithmetic Task 
Participants sat in front of a computer with the right hand resting on a 4-button keypad (Neuroscan STIM pad, 
Compumedics USA, El Paso, TX). Arithmetic summation problems, consisting of four randomly generated sin-
gle digits, three operators, and a target sum (e.g., 4 + 7 – 5 + 2 = 8), were displayed on a computer monitor (ca-
thode ray tube) continuously until the subject responded (Figure 1). Only addition and subtraction were used, 
and equations for which answers were obvious (such as those including several repeated digits) were excluded. 
The participants: a) solved the problems; b) decided whether their calculated sums were less than, equal to, or 
greater than the target sums provided; c) indicated their decisions by pressing the appropriate key on the keypad. 
The keypad buttons were labeled “<”, “=”, and “>”, respectively. Subjects were instructed to answer as quickly 
as possible without sacrificing accuracy. After a response, there was a 1 s inter-trial interval, during which the 
monitor was blank. Participants performed the task until either they quit from exhaustion or three hours had 
elapsed. As can be seen in Table 1, all participants completed at least 6 of the 12 15-min blocks and 11 partici-
pants completed all 12 of the 15-min blocks (i.e., the total 3-hour period). 

2.4. Activation Deactivation Adjective Checklist 
Thayer’s AD-ACL (Thayer, 1986; 1989) is a multi-dimensional checklist reflecting perceptions of activation. 
 

 
Figure 1. Schematic diagram of events in the mental arithmetic task.         
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Table 1. Number of participants per 15-min block.                                                              

Block 1 2 3 4 5 6 7 8 9 10 11 12 

Time (min) 15 - 30 30 - 45 45 - 60 60 - 75 75 - 90 90 - 105 105 - 120 120 - 135 135 - 150 150 - 165 165 - 180 180 - 205 

Participants 16 16 16 16 16 16 15 14 14 13 12 11 

 
Individuals respond to 20 items using a 4-point rating scale (definitely feel, feel slightly, cannot decide, and de- 
finitely do not feel). The scoring procedure includes four subscales: energy (reflects general activation), tired-
ness (reflects general deactivation), tension (reflects high preparatory arousal), and calmness (reflects low pre-
paratory arousal). The AD-ACL is a reliable and valid subjective method (Thayer, 1986; 1989). 

2.5. Visual Analogue Mood Scales 
The VAMS (Stern, 1997) measure eight specific mood states, including afraid, confused, sad, angry, energetic, 
tired, happy, and tense. The VAMS have a neutral schematic. That is, they have a “mood-neutral” face (and 
word) at the top of a 100 mm vertical line and they have a “mood-specific” face (and word) at the bottom of the 
line. Individuals mark the point along the line that best illustrates how they feel at present. Scores range from 0 
to 100, with 100 indicating the maximum level of the mood and 0 indicating the minimum level of a mood. Like 
the AD-ACL, the VAMS are also reliable and valid (Nyenhuis et al., 1997; Stern, 1997). 

2.6. Observed Activity and Alertness 
Activity and alertness were measured by visual inspection of videotapes of each participant’s performance. The 
videotapes showed combined overall scene and facial views of the participants. For each 15-min interval, a sin-
gle rater judged levels of alertness and activity (unnecessary motion) on a five-point scale (Table 2). The alert-
ness scale considered the subjective appearance of sleep, sleepiness, dozing off, distraction, yawning, and gen-
eral alertness. The activity scale considered the frequency of subject motion, including moving in the chair, fid-
geting, tapping, or shaking. The rater was blind to the specific aims of the study, although not to the time inter-
val being rated (as the videotaped segments were viewed sequentially). However, changes in activity and alert-
ness were related to obvious changes in behavior and, as a result, were fairly easy to quantify. Moreover, a 
second rater randomly rated a subset of the videotapes and found good agreement with the ratings. Ratings of 
activity and alertness were tested for correlations with response time, accuracy, and EEG spectral measures. 

2.7. EEG Activity 
EEG was recorded continuously using 32 Ag/AgCl electrodes embedded in an elastic fabric cap (Quik-CapTM, 
Compumedics USA, El Paso, TX). The electrode cap was placed on the participant according to the manufac-
turer’s instructions. The reference electrodes were digitally averaged mastoids and the ground electrode was lo-
cated at AFz. Vertical and horizontal electrooculograms (VEOG and HEOG) were recorded using bipolar pairs 
of 10 mm Ag/AgCl electrodes (one pair superior and inferior to the left eye; another pair to the right and to the 
left of the orbital fossi). Impedances were maintained at less than 5 kΩ for EEG electrodes and 10 kΩ for EOG 
electrodes. The EEG was amplified and digitized with a 64-channel Neuroscan SynampsTM system (Compu-
medics USA, El Paso, TX), with a gain of 1000, sampling rate of 500 s−1 and a pass band of .1 to 100 Hz. Am- 
plifiers were calibrated with a 50 µV signal prior to each testing session. The signals were digitized and stored 
on hard disk drives by a computer equipped with Neuroscan Scan 4.2 software (Compumedics USA, El Paso, 
TX) and archived on optical media (CD-R). 

2.8. Procedures 
Participants: a) were given an orientation to the study; b) read and signed an informed consent document; c) 
completed a brief demographic questionnaire (age, handedness, hours of sleep, etc.); d) practiced the mental 
arithmetic task for 10 minutes; and e) were prepared for data collection by having the electrode cap, EOG, and 
reference electrodes applied. They then completed the pretest self-report measures (i.e., the AD-ACL and 
VAMS) and performed the mental arithmetic task until either three hours had elapsed or volitional exhaustion  
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Table 2. Scale used to quantify observed activity and alertness.                                                         

Value Activity Alertness 

1 Little or no movement (0% - 10% time) Asleep 

2 Occasional movement (10% - 25% time) Dozing off but still responding 

3 Intermittent movement (25% - 50% time) Distracted, yawning or only somewhat alert 

4 Frequent movement (50% - 75% time) Completely awake and mostly alert 

5 Constant movement (75% - 100% time) Completely awake and fully alert 

 
had occurred. Task termination was followed by the completion of post-test self-report measures and participant 
debriefing. 

2.9. Data Processing 
The EEGs, initially processed using Neuroscan Scan 4.2 Edit™ (Compumedics USA) software, were: a) sub-
mitted to an algorithm for the detection and elimination of eye-movement artifact; b) visually examined and 
blocks of data containing artifact were manually rejected; c) epoched around the stimulus (i.e., from –5 s pre- 
stimulus to +8 s post-stimulus); d) low pass filtered (50 Hz; zero phase shift; 12 dB/octave roll off); and e) sub-
mitted to an automated artifact rejection procedure (i.e., absolute voltages > 100 µV). The overall single-epoch 
rejection rate was 47%. The cleaned and filtered epochs resampled at 128 Hz using a non-aliasing method. EOG 
artifact was removed by using wavelet-denoised VEOG and HEOG signals as predictors of the artifact voltages 
at each EEG electrode in a multivariate linear regression. The ocular artifact rejection algorithm consisted of 
four main steps: a) wavelet smoothing of the EOG channels; b) blink detection; c) computing the linear regres-
sion of the EEG on the EOG channels; and d) subtracting the resulting weighted EOG from the EEG channels. 
These steps were repeated for each single EEG epoch. The wavelet smoothing process decomposed the EOG 
channels by using a Daubechies (DWT-8) wavelet filter. The lowest 2% of the coefficients were retained and the 
signal was reconstructed from the retained coefficients (e.g., Trejo & Shensa, 1999). The voltage of each sample 
in the VEOG signal was then compared to an absolute voltage threshold set at 100 μV and marked as a blink or 
non-blink accordingly. A multivariate linear regression algorithm was used to calculate the regression weights 
for the EEG on the VEOG and HEOG channels. Separate regression weights were estimated for blink and 
non-blink epochs. The final step was a linear subtraction of the weighted VEOG and HEOG signals from each 
EEG channel. EEG PSDs were estimated with Welch’s periodogram method at 833 frequencies from 0 - 64 Hz. 
Peak and average power in the theta and alpha bands were measured at electrodes Fz and Pz, respectively. 

2.10. Classification Procedures 
We classified single EEG epochs using kernel partial least squares decomposition of multichannel EEG spectra 
coupled with a discrete-output linear regression classifier, or KPLS-DLR. Through extensive side-by-side testing 
of EEG data, we found that KPLS-DLR is just as accurate as KPLS-SVC, which uses a support vector classifier 
for the classification step (Rosipal, Trejo, & Matthews, 2003). KPLS selects the reduced set of orthogonal basis 
vectors or components in the space of the input variables (EEG spectra) that maximizes covariance with the ex-
perimental conditions. DLR finds the linear hyperplane in the space of KPLS components that separates the 
classes. In a pilot study (Montgomery, Montgomery, & Guisado, 1995) and in the present study, we found that 
the first 15 minutes on task did not produce substantial mental fatigue, whereas mental fatigue was substantial in 
the final 15 minutes. So we randomly split EEG epochs from the first and last 15-min periods into equal-sized 
training and testing partitions for classifier estimation. Only the training partition was used to build the final 
models. The number of KPLS components in the final models was set by five-fold cross-validation. The crite-
rion for KPLS-DLR model selection was the minimum classification error rate summed over all (five) cross-va- 
lidation subsets. 

2.11. Statistical Analyses 
The data were analyzed using either singly or, when appropriate, doubly multivariate repeated measures analyses  
of variance with time of measurement as a within-subjects factor. Doubly multivariate analyses were carried out 
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for AD-ACL subscale scores (energy, tension, calmness, and tiredness), VAMS subscale scores (afraid, con- 
fused, sad, angry, energetic, tired, happy, and tense), behavioral observation data (observed activity and alert-
ness), theta activity measures (peak and band-average amplitudes), and alpha activity measures (peak and band- 
average amplitudes). Singly multivariate analyses of variance were carried out for response time and accuracy. 
For the doubly multivariate analyses, significant multivariate F-ratios were decomposed using single degree of 
freedom, within-subjects contrasts. For the singly multivariate analyses, Huynh-Feldt-corrected degrees of free-
dom and p-values were reported (i.e., because of sphericity). In both analyses, partial η2 values were reported as 
effect size estimators. 

3. Results 
3.1. Self-Report Analyses 
The AD-ACL subscale scores were analyzed in a doubly multivariate ANOVA with time of measurement (i.e., 
pretest vs. posttest) as a within-subjects factor. The main effect of time of measurement was significant (F(4, 5) 
= 10.4, p < .01, η2 = .89). Within-subjects contrasts showed significant linear trends for energy (F(1, 8) = 6.46, 
p < .04, η2 = .45), calmness (F(1, 8) = 21.3, p < .002, η2 = .73), and tiredness (F(1, 8) = 6.38, p < .04, η2 = .44). 
Energy decreased from a pretest mean of 12.0 (standard deviation (SD) = 4.1) to a posttest mean of 8.6 (SD = 
3.7). Calmness decreased from a pretest mean of 16.8 (SD = 1.6) to a posttest mean of 14.1 (SD = 1.8). Tired-
ness increased from a pretest mean of 10.1 (SD = 4.3) to a posttest mean of 15.3 (SD = 5.7). There was also a 
non-significant linear trend for tension (F(1, 8) = .92, p < .37). Thus, the AD-ACL data indicate that our mani-
pulation decreased general activation (i.e., self-reported energy) and preparatory arousal (i.e., self-reported 
calmness) and increased general deactivation (i.e., self-reported tiredness). 

The VAMS subscale scores (i.e., for afraid, confused, sad, angry, energetic, tired, happy, and tense) were 
analyzed in a doubly multivariate ANOVA with time of measurement (i.e., pretest vs. posttest) as a with-
in-subjects factor. The main effect of time of measurement was non-significant (multivariate F(8, 1) = 1.31, p 
= .59). This analysis suggests that our manipulation, despite its effects on activation and arousal, did not influ-
ence other, more durable, moods. 

3.2. Behavior Analyses 
The behavioral observations (i.e., observed activity and alertness) were analyzed in a doubly multivariate 
ANOVA with time of measurement (i.e., 15-min periods) as a within-subjects factor. The main effect of time of 
measurement was significant (F(18, 178) = 3.70, p < .0005, η2 = .27). This analysis suggests that time on task 
influenced behavior (i.e., observed activity and alertness levels). Moreover, time on task had a progressive effect 
on behavior. Within-subjects contrasts showed a linear decrease in alertness (F(1, 10) = 10.4, p < .009, η2 = .51) 
and a linear increase in activity (F(1, 10) = 5.88, p < .04, η2 = .51). Alertness decreased from a mean of 5.00 
(SD = .00) in the first 15-min period to a mean of 2.43 (SD = .98) in the last 15-min period. Activity increased 
from a mean of 1.36 (SD = .51) to a mean of 2.45 (SD = 1.30), respectively. 

The response times (RT) were analyzed in an ANOVA with time of measurement (i.e., 15-min periods) as a 
within-subjects factor. The main effect of time of measurement was significant (Huynh-Feldt corrected F(3, 39) 
= 3.78, p < .03, η2 = .24). This analysis suggests that time on task influenced performance. Moreover, time on 
task had a progressive effect on performance (Figure 2). Within-subjects contrasts showed a significant linear 
increase in RT (F(1, 12) = 8.29, p < .01, η2 = .41) rising from a mean of 6.70 s (SD = 2.18) in the first 15-min 
period to a mean of 7.87 s (SD = 2.64) in the last 15-min period. We found the same pattern of significant ef-
fects for RT analyzed in an ANOVA with fraction of artifact-free trials (i.e., 1st 100, middle 100, and last 100) as 
a within-subjects factor. 

Response accuracy was analyzed in an ANOVA with time of measurement (i.e., 15-min periods) as a with-
in-subjects factor. The main effect of time of measurement was not significant (Huynh-Feldt corrected F(5, 43) 
= 1.74, p = .14). Response accuracy was also analyzed in an ANOVA with fraction of artifact-free trials (i.e., 1st 
100, middle 100, and last 100) as a within-subjects factor. The main effect of number of trials was not signifi-
cant (Huynh-Feldt corrected F(2, 19) = 2.84, p = .09). This analysis suggests that, despite its effects on other 
aspects of behavior, time on task did not have a substantial influence on response accuracy. 
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Figure 2. Effects of time on task on response time and accuracy. Response times trended linearly upwards 
over time beginning after Block 3, or 45 minutes on task. Error rates declined over time but the trend was not 
significant.                                                                                   

3.3. EEG Analyses 
Because the small number of participants precluded analysis of the full montage of electrodes, we examined the 
average spectra for pronounced effects (Figure 3) and focused our analyses on the electrodes that had maximal 
average voltages for the alpha and theta bands (i.e., Fz for theta and Pz for alpha). Electrode Fz shows a marked 
increase in theta power spectral density near 6 Hz. Electrode Pz shows marked increases in alpha PSD with 
peaks near 9 Hz (alpha 1) and 10 Hz (alpha 2). The increase in theta power is steady over the three time periods, 
whereas the increase in alpha 1 and alpha 2 is large between early and middle time periods and smaller between 
middle and late time periods. The relative distribution of average alpha 1 power is more anterior than alpha 2, 
with alpha 1 showing a maximum at Cz and alpha 2 showing a maximum at Pz. 

The changes in frontal midline theta (i.e., average PSDs and peak amplitudes at Fz) were analyzed in a doubly 
multivariate ANOVA with time of measurement (i.e., 15 min-periods) as a within-subjects factor. Each subject’s 
theta peak was measured individually. The main effect of time of measurement was significant (multivariate 
F(18, 178) = 2.05, p < .01, η2 = .17). Average power in the theta band (4 - 8 Hz) increased from a mean of 
199.36 µV2/Hz (SD = 97.50) in the first 15-min period to a mean of 256.58 µV2/Hz (SD = 135.57) in the last 
15-min period. Peak amplitude in the theta band increased from a mean of 272.4 µV2/Hz (SD = 146.0) in the 
first 15-min period to a mean of 390.8 µV2/Hz (SD = 227.1) in the last 15-min period. This analysis suggests 
that theta increased with time on task. Moreover, this analysis suggests that time on task had a progressive effect 
on frontal midline theta activity. Within-subjects contrasts showed significant linear increases in average theta 
PSDs (F(1, 10) = 7.42, p < .01, η2 = .48) and in peak theta amplitudes (F(1, 10) = 9.31, p < .01, η2 = .48). 

The changes in midline parietal alpha activity (i.e., average PSDs and peak amplitudes at Pz) were analyzed 
in a doubly multivariate ANOVA with time of measurement (i.e., 15-min periods) as a within-subjects factor. 
For each subject the peak alpha power was measured individually without respect to distinctions of alpha 1 and 
alpha 2 bands shown in Figure 3. The main effect of time of measurement was significant (multivariate F(18, 
178) = 2.20, p < .005, η2 = .18). Average power in the alpha band (8 - 13 Hz) increased from a mean of 307.4 
µV2/Hz (SD = 434.3) in the first 15-min period to a mean of 459.0 µV2/Hz (SD = 593.9) in the last 15-min pe-
riod. This analysis suggests that alpha power increased progressively with time on task. Within-subjects con-
trasts showed significant linear increases in average alpha PSDs (F(1, 10) = 6.07, p < .03, η2 = .38). Peak alpha 
amplitudes increased and trended similarly, but not significantly so (F(1, 10) = 4.11, p = .07). 

3.4. Classification 
We applied our classification procedure to EEG recordings from 14 of the 16 subjects (two subjects had too few 
EEG epochs for model estimation). The EEG epochs were synchronized with the onset of each math problem, 
extending from –5 s to +8 s relative to each stimulus onset. As such there was some overlap among the EEG 
segments. However a second analysis of 3.5 s segments with no overlap produced highly similar results, so we 
will focus only on the long-epoch results. We also reduced the likelihood of electromyogram artifacts by low- 
pass filtering the EEG with an 18-Hz cutoff. 
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Figure 3. Grand average EEG power spectra and topographic maps at peak frequencies in 
the theta band (peak 6.25 Hz), alpha 1 band (peak 9 Hz) and alpha 2 band (peak 10 Hz) 
across all subjects as a function of time on task. Time periods for each spectrum or plot were 
early = first 15-min block, late = last 15-min block, middle = all other blocks. Electrode Fz 
shows a marked increase in theta power spectral density (PSD) near 6 Hz. Electrode Pz 
shows a marked increase in alpha PSD with peaks near 9 Hz (alpha 1) and 10 Hz (alpha 2). 
The color scales of the topographic maps are in units of dB/Hz and range from blue to red 
with the following limits: theta = −3.6 to 2.4, alpha 1 = −4.5 to 2.7, alpha 2 = −5.3 to 3.0. All 
topographic maps in this report used a spherical spline interpolation algorithm (Perrin et al., 
1989) and the APECSgui toolbox (Pacific Development & Technology, 2012) with an adap-
tation of the eeg_topoplot function from EEGLAB (Delorme & Makeig, 2004).                                                                 

 
For each subject we made a KPLS-DLR model using either linear or Gaussian (nonlinear) kernels and se-

lected the best model as described above. On average linear kernels had slightly better results than Gaussian ker- 
nels, so we focus on linear kernels here. Classification accuracies (Figure 4) across both classes for 18-Hz fil-
tered EEG ranged from 91.12 to 100% (mean = 98.30, Table 3). The corresponding range for 11-Hz filtered 
EEG was 89.53 to 98.89% (mean = 98.30%). The number of KPLS components ranged from 1 to 4 (mean 2.77) 
for 18-Hz EEG and from 1 to 5 (mean 3.76) for 11-Hz EEG (Table 3). 

With as few as two components, the separation of classes was usually evident from the distribution of KPLS 
scores for single EEG epochs. The test-set data for the first and last 15-min blocks occupied distinct regions 
inthe space of the KPLS scores (Figure 5). 
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Figure 4. Classification accuracies for 14 subjects and the averages 
across subjects with 1 - 18 Hz band pass. Hatched bars show test set 
accuracies for overall classification; black bars are for Class 1 (alert) 
epochs, and white bars are for Class 2 (fatigued) epochs.                

 

 
Figure 5. Example of KPLS scores predicted for single-trial EEG 
spectra for early (dark circles) and late (light triangles) blocks of the 
mental arithmetic task in one subject (S3).                        

 
Table 3. KPLS-DLR classification accuracies (test proportion correct) by filter cutoff and class membership.               

Low pass cutoff TPC train TPC test TPC Class 1 TPC Class 2 Mean number of  
components 

11 Hz 99.96 97.01 97.37 95.57 3.76 

18 Hz 99.86 98.30 98.78 96.97 2.77 

 
The scalp topography of the KPLS weights can serve as an indicator of which regions or electrodes strongly 

influence classification. For example, by plotting the KPLS model coefficients at the theta and alpha band peaks 
of the EEG spectra in one subject (Figure 6), we see that frontocentral midline sites are important for classifica-
tion in the theta band, with a maximum near Fz. In the alpha band, the discriminating electrodes were concen-
trated near Pz. 

3.5. KPLS Model Prediction 
We also examined the predictive validity of the KPLS-DLR models by testing them with data from the first nine 
intervening 15-min periods (between first and last). The behavior of the classifiers for these periods was consis-
tent with an orderly, progressive migration of single-trial KPLS predictions from the non-fatigued to the fati- 
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Figure 6. Topographical maps of the coefficients for the first KPLS component at the peak frequencies in theta band 
(left, 7.0 Hz) and alpha band (right, 9.25 Hz) for one subject (S7). The colored areas are spherical spline interpolated 
values, with the largest values in red and the smallest in blue. Electrodes nearest the maxima were Fz for the theta 
band and Pz for the alpha band.                                                                       

 
gued class. This observation agrees with the trends we observed in response times, EEG measures, and beha-
vioral observations. We examined these patterns of migration by inspecting graphs of the predicted scores for 
the first two components of the KPLS models for single subjects (Figure 7). Initially, the predicted points over-
lapped with the region occupied by the non-fatigued training set. Over time, the predicted points shifted towards 
the fatigue region. For each of 11 subjects, we computed the center of mass (mean) of the KPLS classification 
scores for each of 10 fifteen-minute blocks (Figure 8). Negative scores represent alert states and positive scores 
represent fatigue states. For most subjects there is a progressive shift of the means toward the fatigue state, with 
some intermittent reversals. Three subjects entered fatigue between 15 - 30 min whereas one subject did not en-
ter fatigue until between 105 - 120 min. Although the majority of subjects (n-6) did not cross the zero line be-
tween classified alertness and fatigue until between 60 - 75 min, all subjects show progressive transitions to-
wards the fatigue state in the first 15 - 30 minutes. 

4. Discussion 
Our results showed that the power spectral densities of theta and alpha EEG bands co-varied with the degree of 
fatigue that subjects experienced. Power in both theta and alpha bands increased significantly between the be-
ginning and end of the task. These increases were confirmed with behavioral and subjective reports as pertaining 
to alert and fatigued conditions. Moreover, we found that we could accurately model and estimate fatigue as a 
function of EEG spectral features using KPLS-DLR, a statistical learning theory based classifier. 

4.1. Behavioral Measures 
Time on task produced decreased general activation (i.e., self-reported energy) and preparatory arousal (i.e., 
self-reported calmness) and increased general deactivation (i.e., self-reported tiredness) but did not significantly 
influence other moods. These effects support the assertion that our task produced a state of substantial mental 
fatigue. Observations of the participants showed that behavioral activity progressively increased while alertness 
progressively decreased over time. Moreover, there was a progressive slowing of response times. However, time 
on task did not significantly influence response accuracy. Together, these results suggest that our subjects expe-
rienced mental fatigue, but did not sacrifice accuracy as might be expected if motivation had waned. The mode- 
rate, general increases in RT over time also indicate increasing mental fatigue, but not a severe increase in RT, 
as might be expected if lapses or microsleep episodes had occurred frequently. 
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Figure 7. Estimating the development of fatigue over time in one subject (S3). KPLS 
scores were predicted for EEG epochs from nine 15 minute blocks between the 
training set blocks (B2 - B10). Block 2 = 15 - 30 min, block 3 = 30 - 45 min, block 4 
= 45 - 60 min, … , block 10 = 135 - 150 min. Black circles and purple crosses are the 
KPLS C1 and C2 scores of single EEG epochs from fatigued (B1) and non-fatigued 
(B12) training sets, respectively. Colored diamonds are the KPLS C1 and C2 scores (x 
= C1, y = C2) of single EEG epochs for intervening 15-minute blocks 2 - 10. In this 
subject, the drift of the orange diamonds in B3 away from the black circles and 
towards the purple crosses marks the onset of fatigue after 30 - 45 minutes on task. By 
the tenth block most predicted scores fell in the fatigue region, as defined by the 
training data set.                                                                

 

 
Figure 8. Means of the KPLS classification scores for each 15-minute block in the 11 subjects who completed 12 
blocks or 180 minutes of continuous mental arithmetic performance. For subject S3 the points in the range 30 to 
150 min (Blocks 2 - 10) correspond to the centers of the clouds of points shown moving from the alert region to 
the fatigue region in Figure 7. Negative scores represent alert states and positive scores represent fatigue states.     
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Prolonged vigilance appears to have different effects on error rates than fatigue arising from prolonged cogni-
tive effort such as mental arithmetic. For example, in a simulated sonar task, an EEG-based alertness index fol-
lowed closely the time course of detection error rates (Makeig & Inlow, 1993). However, we found that cogni-
tively fatigued subjects continued to perform with low and stable error rates for up to three hours. Our task dif-
fered from the sonar task by virtue of having strong cognitive demands, whereas the demands of the sonar task 
were mainly sensory or perceptual (detecting sonar sounds). The main behavioral impact of cognitive fatigue in 
our arithmetic task appeared to be a slowing of mental processes, because response times trended significantly 
and progressively higher over time. Because the response demands of our task were simple and highly practiced, 
we do not consider that cognitive fatigue substantially slowed response selection processes. Instead, our results 
are more consistent with the view that cognitive fatigue slows down central executive functions such as working 
memory and decision making as compared to perception and response-selection. 

4.2. EEG Measures 
Our EEG analyses indicate that time on task had a progressive influence on PSDs of frontal midline theta and 
parietal alpha activity. PSDs in both of these EEG bands increased as a function of time on task. Our inspection 
of the EEG spectra did not indicate effects outside the theta and alpha bands. In particular, there were no indica-
tions of effects at 14 Hz or in the beta band. The lack of effects in bands above 14 Hz also discounts electro-
myographic artifacts or other broad-band noise sources as determinants of the theta and alpha effects. Progres-
sive increases in alpha and theta band powers were also observed in a study of extended performance of an air 
traffic control task (Krishnan, Dasari, & Ding, 2014). In general agreement with our findings, the EEG changes 
in the air traffic control task indicated alertness-to-fatigue “transition times” after about 70 minutes of task per-
formance. In our mental arithmetic task such transitions may occur earlier, in as few as 15 - 30 minutes of con-
tinuous performance. Task differences may account for the shorter transition time observed here, or the KPLS- 
derived EEG measures we used may be more sensitive than those used by Krishnan et al. 

Our results do not support an overall slowing of the EEG in mental fatigue, as much as they indicate specific 
increases in frontal midline theta and midline parietal alpha power. However, the scope of our analyses does not 
allow us to rule out specific fatigue-related decreases in individual peak alpha frequency or relative proportions 
of power in lower and upper alpha bands. More recent analyses across several studies of sustained attention 
tasks suggests that fatigue may induce a shift in the frequency of the alpha rhythm accompanied by a relative 
shift of the alpha sources towards more anterior locations (Rosipal et al., 2009; Trejo et al., 2010; Rosipal et al., 
2013; Zaidel et al., 2013). A similar finding was observed by Barwick et al. (2012) when mental fatigue devel-
oped in a Stroop interference task. Studies of individual alpha frequency changes should be a fertile area in fu-
ture mental fatigue research. 

One explanation of the fatigue-induced increases in alpha band power derives from a neurophysiological 
model about the significance of varying alpha band power levels. The model states that “when patches of neu-
rons display coherent activity in the alpha band, a depressed state of active processing of information in the un-
derlying cortical neuronal populations can be assumed to exist” (Pfurtscheller & Lopes da Silva, 2005: pp. 
1008-1009). This model is consistent with the idea that the likelihood of depressed or reduced processing sur-
rounding the onset of a task-relevant stimulus increases as a function of time on task or in relation to subjective-
ly perceived mental fatigue. 

Another possible explanation for increasing alpha power concerns the timing of our EEG spectral measures. 
Our EEG epochs were synchronized with the onset of each stimulus presented in the mental arithmetic task. 
This means that the EEG features associated with task event processing will tend to dominate the analysis, as 
compared to EEG features that are randomly selected over time. It is possible that over time on task, alpha os-
cillations became progressively more synchronized with task events. For example, if bursts of alpha tended to 
occur randomly early on but became regularly linked to stimuli or responses later. Our present analyses provide 
no evidence for or against this explanation as we did not look at event-related synchronization measures, but this 
again seems a fertile area for future analyses. 

The hypothesized fatigue-related increase in frontal midline theta band PSDs was supported by our analyses. 
One current hypothesis states that increases in theta band PSDs are associated with increases in the demands of 
cognitive processes (Klimesch, 1999; Pfurtshceller & Lopes de Silva, 2005). In our mental arithmetic task we 
consider that the critical cognitive processes are working memory, long-term memory, and selective attention. A 
large and diverse body of experimental reports has substantiated that working memory (WM) capacity and speed 
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of access to long-term memory (LTM) are critical limiting processes in cognitive performance (Anderson, 1995). 
In particular, a theoretical framework has emerged, which relates alpha, theta, and beta activity in the anterior 
cingulate cortex and the hippocampus to WM and LTM (Gevins et al., 1997; Klimesch et al., 1997; Mecklinger, 
Kramer, & Strayer, 1992). Distinctions are now recognized among the spatial and frequency parameters that 
characterize: spatially diffuse theta rhythms associated with sleepiness, spatially focused, theta rhythms asso-
ciated with cognitive effort and WM load, lower alpha rhythms (8 - 10 Hz) associated with relaxed wakefulness, 
and focused higher alpha rhythm (10 - 12 Hz) suppression associated with spatial and non-spatial shifts of atten-
tion (reviewed in Klimesch, 1999). These experimental and theoretical results are generally consistent with the 
theta band effects we observed here. 

Another model for the increase in frontal midline theta band power states that the frontal executive network 
may go “off-line” during states of mental fatigue. In this view, the observed increases in theta power would in-
dicate that rhythmic theta represents an “idling” state and the frontal executive network is in a standby mode. In 
support of this view, Lorist et al. (2005) found evidence of reduced frontal event-related potential amplitude 
with time on task in subjects performing a mentally fatiguing switch task for two hours. Another study, in which 
functional magnetic resonance were images recorded while participants performed a psychomotor vigilance test 
task for 20 minutes, also found evidence of reduced frontal-parietal activity with time on task (Lim et al., 2010). 
Activity in the fronto-parietal network was lower during post-task rest compared to pre-task rest, and cerebral 
blood flow decreased in this network in a manner correlated with a decline in task performance. The view that 
increasing theta signals reduced activity in the frontal executive network goes hand in hand with the view that 
increasing alpha activity signals reduced activity in parietal regions. Both theta and alpha rhythms increasing 
could also suggest a withdrawal from executive and attentive processing to more activity in the default mode 
network. Modeling of EEG-fMRI correlations at the network level is still a young field that must explain a com-
plex and subtle set of effects (Murta et al., 2015), but some evidence shows that default mode network activation 
appears to be more highly related to beta-band activity than to alpha or theta (Laufs et al., 2003). However, 
where correlations with default mode network activation and alpha were obtained, it was with low frequency 
alpha (Jann et al., 2009; 2010), which would agree with the notion that growing mental fatigue produces a shift 
away from executive and attention networks to default mode and is accompanied by a shift in alpha frequency to 
the lower alpha band. Perhaps it is in such flights away from task performance to default mode that a person 
finds time to re-evaluate goal priorities, as predicted by Hockey’s (2013) motivational model of mental fatigue. 
We strongly encourage new research to sort out the reasons for the significant effects of mental fatigue on in-
creased alpha and theta band powers, as well as their relationship to functional brain networks. 

4.3. Classification and Prediction 
Overall, our KPLS-DLR classification of single-trial EEG epochs ranged from 90% to 100% with a mean of 97% 
to 98%. The performance of these classifiers is highly accurate for single trials, and may serve as the basis for 
predictive models of mental fatigue in operational settings. Inspections of the predictive behavior of the KPLS 
models showed an orderly relationship between the scores and time on task as well as between the scores and 
correlated behavioral, subjective, and performance measures. In the 11 subjects that we examined for model 
predictions, our classifier generalized in an orderly manner to data from the 15-minute blocks in between the in-
itial and final 15-minute blocks used to train the classifier. Specifically, the ensembles of KPLS scores used to 
estimate mental states from single EEG epochs in these intervening blocks exhibited an orderly progression 
from alertness to fatigue. According to the estimates of our classifier, subjects fatigued at widely different rates, 
but most subjects entered the region of KPLS scores corresponding to fatigue after about 60 min on task. Al-
though the focus of the present study was on binary classification of alert vs. fatigue states, we have also as-
sessed the clustering of KPLS-derived features with these data and have found evidence that the development of 
mental fatigue comprises three distinct states of alertness: alert, normal, and fatigued (Trejo et al., 2007). Future 
studies should examine whether such states correspond to physiologically distinct network activities or represent 
levels of activation within a fixed set of networks. 

The present study also shows that the individual EEG spectral signatures and patterns of change are useful for 
estimation of cognitive fatigue. The general trend across subjects in EEG spectral change is explained by an al-
pha + theta model, with both alpha and theta PSDs being greater in fatigued states than in normal states. How-
ever, the estimation of momentary cognitive fatigue states from single EEG trials of 13 s duration was most ef-
fective with multi-electrode frequency spectra of individual subjects. The KPLS algorithm correctly identified 
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features of EEG spectra for each individual, and accurately classified over 90% of single EEG trials as having 
come from a period of alertness or mental fatigue in most subjects. 

Our results suggest several important implications for future EEG studies of mental fatigue. First, as others 
have found (e.g., Galbraith & Wong, 1993; Smith et al., 2001), EEG classification algorithms benefit greatly by 
being both individualized and sensitive to multiple sensors and frequency bands. The development of simpler 
and more general models, which apply to a broad set of subjects, will require considerable additional research. 
Another well-known problem in the applied EEG community is that the performance of classification algorithms 
from day to day, or at different times of day is unstable (Trejo, Matthews, & Allison, 2007; Wilson & Russell, 
2003a). Additional research is needed to develop methods for stabilizing the link between EEG features and 
mental states such as fatigue or alertness over long periods of time. Finally, some type of saliency analysis, such 
as our maps of spectral features (Figure 6), is important in order to determine which fundamental aspects of the 
EEG yield the most accurate predictions (Wilson & Russell, 2003b). Additional research is also needed to de-
velop quantitative methods for saliency analyses that are meaningful across studies and feature extraction or 
classification algorithms. 
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