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Abstract

In many areas of research and industrial situations, including many data analytic problems in
chemistry, a strong nonlinear relation between different sets of data may exist. While linear models
may be a good simple approximation to these problems, when nonlinearity is severe they often
perform unacceptably. The nonlinear partial least squares (PLS) method was developed in the
area of chemical data analysis. A specific feature of PLS is that relations between sets of observed
variables are modeled by means of latent variables usually not directly observed and measured.
Since its introduction, two methodologically different concepts of fitting existing nonlinear rela-
tionships initiated development of a series of different nonlinear PLS models. General principles of
the two concepts and representative models are reviewed in this chapter. The aim of the chapter
is two-fold i) to clearly summarize achieved results and thus ii) to motivate development of new
computationally efficient nonlinear PLS models with better performance and good interpretability.
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Introduction

Two-block linear partial least squares (PLS) has been proven to be a valuable method for modeling
relationships between two data sets (data blocks). This method was developed in chemometrics
and has received a great deal of attention in the fields of analytical chemistry, organic and bio-
organic chemistry, medicinal chemistry and chemical engineering. PLS has also been successfully
applied in other scientific areas including bioinformatics (Boulesteix & Strimmer, 2007), food re-
search (Martens & Martens, 1986), medicine (Worsley, 1997), pharmacology (Leach & Gillet, 2003;
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Nilsson, Jong, & Smilde, 1997), social sciences (Hulland, 1999), physiology and neuro-physiology
(Lobaugh, West, & McIntosh, 2001; Trejo, Rosipal, & Matthews, 2006), to name a few.

PLS models relationships between sets of observed variables by means of latent variables. It can
serve for regression and classification tasks as well as dimension reduction techniques and modeling.
The underlying assumption of all PLS methods is that the observed data is generated by a system or
process which is driven by a small number of latent (not directly observed or measured) variables.
This projection of the observed data onto a subspace of usually orthogonal latent variables has
been shown to be a powerful technique when observed variables are highly correlated, noisy and
the ratio between the number of observations (data samples) and observed variables is low. The
basic assumption of linear PLS is that the studied relation between observed data sets is linear and
the same assumption of linearity then holds for modeling the relation in the projected subspace;
that is, between latent variables.

However, in many areas of research and industrial situations a strong nonlinear relation between
sets of data may exist. Although linear PLS can be used to approximate this nonlinearity, in many
situations such approximation may not be adequate and the use of a nonlinear model is needed.

This chapter introduces the main concepts of nonlinear PLS and provides an overview of its
application to different data analysis problems. The aim is to present a concise introduction that
is a valuable guide for anyone who is concerned with nonlinear data analysis.

Background

The concept of nonlinear PLS modeling was introduced by S. Wold, Kettaneh-Wold, and Skager-
berg (1989). Already in this seminal work, the authors distinguished and described two basic
principles for modeling curved relationships between sets of observed data. The first principle, here
denoted as Type I, is well-known and used in mathematical statistics and other research fields. The
principle applies first a nonlinear transformation to observed variables. In the new representation
a linear model is constructed. This principle can be easily applied to PLS, and indeed several
different nonlinear PLS models were proposed and applied to real data sets. The first nonlinear
PLS models in this category were constructed by using simple polynomial transformations of the
observed data (Berglund & Wold, 1997, 1999). However, the proposed polynomial transformation
approach possesses several computational and generalization limitations. To overcome these limi-
tations, a computationally elegant kernel PLS method was proposed by Rosipal and Trejo (2001).
The powerful concept of a kernel mapping function allows to construct highly flexible but still
computationally simple nonlinear PLS models. However, in spite of the ability of kernel PLS to
fit highly complex nonlinear data relationships, the model represents a ‘black-box’ with limited
possibility to interpret the results with respect to the original data.

It is the second, here denoted as Type II, general principle for constructing nonlinear PLS
models which overcomes the problem of loss of interpretability, but this is achieved at the expense
of computational cost and optimization complexity. In contrast to the Type I principle, a nonlin-
ear relation between latent variables is assumed and modeled, while the extracted latent vectors
themselves are kept to be a linear combination of the original, not transformed, data. A quadratic
function was used to fit relationship between latent variables in the first Type II nonlinear PLS
approaches (Höskuldsson, 1992; S. Wold et al., 1989). Later, smoothing splines (Frank, 1990;
S. Wold, 1992), artificial neural networks (Baffi, Martin, & Morris, 2000; Qin & McAvoy, 1992),
radial basis neural networks (Wilson, Irwin, & Lightbody, 1997) or genetic programming methods
(Hiden, McKay, Willis, & Montague, 1998) were used to fit more complex nonlinear relationships.
Computational and optimization difficulties of the approach arise at the point when initially esti-



3

mated weights for projecting observed data into latent vectors need to be corrected. The initial
weights are estimated in the first step of the approach when a linear relationship between latent
vectors is assumed. However, this linear assumption is violated by considering a nonlinear relation
between the extracted latent vectors in the second step. Several methods were proposed to itera-
tively update both, the initial weights estimate and the latent variables relation fitting function,
but a simple optimization and computational methodology is still missing (Baffi, Martin, & Morris,
1999; Searson, Willis, & Montague, 2007; S. Wold et al., 1989; Yoshida & Funatsu, 1997).

Before directly jumping into the area of nonlinear PLS, a section devoted to fundamentals of
linear PLS is provided. The description uses nomenclature and originates from a recently published
detailed survey of the variants of linear PLS and advances in the domain (Rosipal & Krämer, 2006).
For readers interested in detailed understanding of linear PLS the survey can be a good starting
point before reading this chapter. Next, an overview of the nonlinear PLS concepts is presented.
Special emphasis is placed on kernel learning and the kernel PLS description. Detailed procedural
and algorithmic implementation of each method mentioned goes beyond the scope of the chapter,
but the limitation is compensated by an extensive literature survey. The technical overview of
the nonlinear PLS approaches is followed by the section discussing selected positive and negative
aspects of the presented methods. Ideas for further comparison, evaluation and extension of the
current nonlinear PLS development status are also briefly sketched. A few concluding remarks close
the chapter.

Linear Partial Least Squares

Consider the general setting of a linear PLS algorithm to model the relation between two data
sets (blocks of observed variables). Denote by x ∈ X ⊂ RN an N -dimensional vector of variables
in the first set of data and similarly by y ∈ Y ⊂ RM a vector of variables from the second set.
PLS models the relationship between the two data sets by means of latent vectors (score vectors,
components). Denote by n the number of data samples and let X be the (n×N) matrix of centered
(zero-mean) variables sampled from the X -space. Similarly, let the Y-space data are represented
by the (n×M) zero-mean matrix Y. PLS decomposes the X and Y matrices into the form

X = TPT + E

Y = UQT + F
(1)

where T and U are the (n × p) matrices of the p extracted score (latent) vectors, the (N × p)
matrix P and the (M × p) matrix Q represent matrices of loadings and the (n×N) matrix E and
the (n ×M) matrix F are the matrices of residuals. The PLS method, which in its classical form
is based on the nonlinear iterative partial least squares (NIPALS) algorithm (H. Wold, 1975), finds
weight vectors w, c such that

[cov(t,u)]2 = [cov(Xw,Yc)]2 = max|r|=|s|=1[cov(Xr,Ys)]2 (2)

where cov(t,u) = tTu/n denotes the sample covariance between the score vectors t and u. The
NIPALS algorithm starts with random initialization of the Y-space score vector u and repeats a
sequence of the following steps until convergence

1) w = XTu/(uTu) 4) c = YT t/(tT t)
2) ‖w‖ → 1 5) ‖c‖ → 1
3) t = Xw 6) u = Yc

(3)
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where ‖.‖ → 1 denotes transformation of a vector to unit norm. Once the score vectors t and u
are extracted, the vectors of loadings p and q from (1) can be computed by regressing X on t and
Y on u, respectively

p = XT t/(tT t) and q = YTu/(uTu)

Note that different numerical techniques can be used to extract weight vectors and corresponding
score vectors, some of which can be more efficient than NIPALS (De Jong, 1993; Höskuldsson,
1988).

PLS is an iterative process. After the extraction of the score vectors t and u, the matrices X and
Y are deflated by subtracting their rank-one matrix approximations. Different forms of deflation
exist, and each form defines a certain variant of PLS (for example, see Rosipal and Krämer (2006)).
The most frequently used variant of linear PLS is based on two assumptions i) the score vectors
{ti}pi=1 are good predictors of Y, and ii) a linear inner relation between the scores vectors t and u
exists; that is,

U = TD + H (4)

where D is the (p × p) diagonal matrix and H denotes the matrix of residuals. The asymmetric
assumption of the input–output (predictor–predicted) variables relation is transformed into a de-
flation scheme where the input space score vectors {ti}pi=1 are good predictors of Y. The score
vectors are then used to deflate Y; that is, a component of the regression of Y on t is removed
from Y at each iteration of PLS

X← X− ttTX/(tT t) and Y ← Y − ttTY/(tT t) = Y − tcT (5)

where c is the weight vector defined in step 4 of the NIPALS algorithm (3).

PLS Regression and Classification

By considering the assumption (4) of a linear relation between the scores vectors t and u, the
decomposition of the Y matrix in (1) can be rewritten as

Y = TDQT + (HQT + F)

and this defines the linear PLS regression model

Y = TCT + F∗ (6)

where CT = DQT denotes the (p ×M) matrix of regression coefficients and F∗ = HQT + F is
the residual matrix. Equation (6) is simply the decomposition of Y using ordinary least squares
regression with orthogonal predictors T; that is, the estimate of C is given as C = (TTT)−1TTY.
The PLS regression model (6) can also be expressed using the originally observed data X and
written as (Höskuldsson, 1988; Manne, 1987; Rännar, Lindgren, Geladi, & Wold, 1994; Rosipal &
Krämer, 2006)

Y = XB + F∗ (7)

where the estimate of B has the following form

B = XTU(TTXXTU)−1TTY

The PLS classification model closely follows the regression model (6). However, in the classi-
fication scenario the Y matrix is a class membership matrix uniquely coding each class of data.
The close connection between Fischer discriminant analysis, canonical correlation analysis (CCA)
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and PLS has been discussed in Barker and Rayens (2003); De Bie, Cristianini, and Rosipal (2005);
Rosipal, Trejo, and Matthews (2003); Rosipal and Krämer (2006).

The major focus of the chapter is the nonlinear extraction of the PLS score vectors and the
followed up regression or classification step using the extracted vectors is somehow irrelevant to us.
Moreover, variants of PLS similar to CCA for modeling symmetric relationships between sets of
data exist (see Rosipal and Krämer (2006) or Wegelin (2000) for overview). There is no theoretical
limitation to apply the principles of nonlinear PLS to these variants as well.

Nonlinear Partial Least Squares

Several different nonlinear PLS methods have been proposed. In principle these methods can be
categorized into two groups. The Type I group of approaches consists of models where the observed
X matrix of independent variables is projected onto a nonlinear surface. The inner relation (4)
between score vectors t and u is kept linear. In contrast, it is the Type II group of approaches
where the nonlinear relation between X and Y data sets is modeled by replacing the linear relation
(4) with a nonlinear form. In what follows, both types of nonlinear PLS are described in detail.

Type I: Nonlinear projection of X

Methods of this group of nonlinear PLS are based on a principle of mapping the original data by
means of a nonlinear function to a new representation (data space) where linear PLS is applied.
A simple example would be the extension of the X matrix by considering component-wise square
terms x2

i and cross-terms xixj of the input vector x. It has been shown by Gnanadesikan (1977)
and pointed out by S. Wold et al. (1989) that such an extension corresponds to the projection of
the original data space onto a quadratic surface. In fact, this result was used by S. Wold et al.
(1984) for PLS response surface modeling. To better understand this idea consider a simple binary
classification problem depicted in the left part of Figure 1. An ellipsoidal boundary between two
classes depicted by circles and crosses would be impossible to properly model with a linear line.
Now consider a simple transformation of the original 2D data into a 3D data space denoted by F
and defined by the following mapping

Φ : X = R2 → F = R3

x = (x1, x2)→ Φ(x) = (x2
1,
√

2x1x2, x
2
2)

(8)

It can be easily observed (right part of Figure 1) that the original nonlinear classification problem
in 2D was transformed into a linear problem in 3D.

However, in practice it might be very difficult to find such a simple nonlinear transformation or
extension of the original data space into a new space where the original nonlinear problem becomes
linear. This is mainly due to the reason that we do not know the exact shape of the nonlinear
boundary in the classification scenario or we do not know the exact form of the nonlinear rela-
tionship between predictor and predicted space in regression. Nevertheless, following the idea that
in a higher dimensional space, where original data are mapped, the nonlinear problem becomes
easier to solve or a less complex boundary can be found, many very useful techniques and methods
have been developed in different research communities. Polynomial regression (for example see
Seber and Lee (2003)), generalized additive models (Hastie & Tibshirani, 1990), projection pursuit
regression (Friedman & Stuetzle, 1981), higher order splines or multivariate adaptive regression
splines (Friedman, 1991; Wahba, 1990) are a few of the popular models developed in the statistical
community. Regularization networks (Girosi, Jones, & Poggio, 1995), artificial neural networks
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Figure 1: An example of transformation of a nonlinear classification problem with an ellipsoidal
decision boundary (left) to a problem where a linear hyperplane can be used to separate two classes
(right). Two classes are defined by circles and crosses, respectively. The original 2D data (left)
were transformed into a 3D space (right) using the nonlinear mapping defined in eq. (8).

(Haykin, 1999) or recently developed theory and algorithms of kernel learning and support vec-
tor machines are examples of nonlinear model developments in the machine learning community
(Cristianini & Shawe-Taylor, 2000; Schölkopf & Smola, 2002; Shawe-Taylor & Cristianini, 2004).

The nonlinear PLS model with quadratic projection of X was firstly discussed by S. Wold et
al. (1989), but the principle of extending X with nonlinear terms was elaborated later by Berglund
and Wold (1997). In their approach, called implicit nonlinear latent variables regression (INLR),
Berglund and Wold proposed to extend the X matrix with squared x2

i , cubic x3
i or higher order

polynomial terms while ignoring cross-terms. To support this idea they showed that by “expanding
the X-block with square terms in some ways corresponds to using a model that includes not only the
squares of the latent variables, t2

1, t
2
2, t

2
3, etc., but also the cross-products of these, t1t2, t1t3, t2t3,

etc.” (Berglund & Wold, 1997).

On the other hand, their expansion of the X matrix with squared or higher order terms only,
was strongly motivated by scaling limits of the full expansion. In the case of a high-dimensional
predictor data and a small number of observations, that is, n << N , expanding X with both
squared and cross-terms would result into extreme increase of the number of new variables in
comparison to the existing number of observations. For an N -dimensional input space, there exist
(d+N−1)!
d!(N−1)! different the d-th order products (monomials) of the elements xi.

For example, consider a standard problem from near-infrared reflectance spectroscopy where
the predictor space consists of 250 absorbances at different wavelengths. Using the second-order
polynomial expansion would result in a new expanded space with 31375 variables. Cubic expansion
(d = 3) would increase this number to more than 2.6 million monomial terms and the problem
quickly becomes computationally intractable.

The other problem associated with such an expansion is related to the one known as ‘curse
of dimensionality’. The curse of dimensionality is the term associated with the problem of an
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exponential increase of parameters which need to be estimated when mapping original data into a
high-dimensional space, while the number of observed samples remains unchanged. For example,
a regression model fitted by ordinary least squares method would result in an unbiased estimate of
regression coefficients, but the variance of the estimate can be unacceptably high. Thus, although
such a model will fit training data well, in the sense of sum of square errors, its generalization ability
to fit previously unobserved (testing) data can be very poor. To avoid the problem, different forms
of regularization are usually applied. One approach that is often used is based on diminishing the
influence of regression coefficients with high absolute values. This can be done by penalizing a
properly selected norm of the vector of estimated regression coefficients.

However, the new concept of statistical learning theory developed in its origin by Vapnik and
Chervonenkis (Vapnik, 1998, 1995) provided new insights and perspectives into the problems of
curse of dimensionality and bad generalization of learning machines. Based on the theory new
support vector machines and kernel learning algorithms and concepts were developed. Among other
models the nonlinear kernel PLS method was proposed. The basic principles of kernel learning are
described in the following subsection.

Kernel Learning and Kernel PLS

Statistical learning theory was introduced by Vapnik and Chervonenkis in the early 1970’s (Vapnik,
1998; Vapnik & Chervonenkis, 1974). However, it was not until the middle of the 1990’s when this
theory inspired development of new types of learning algorithms. The core principle of the new
algorithms is the mapping of originally observed data into a high-dimensional feature space where
simple linear models are constructed. The generalization abilities of the constructed models are
controlled by considering theoretical results of the structural risk minimization (SRM) principle.
SRM is an inductive principle where a trade-off between good-model fitting and the complexity of
the model is appropriately balanced. In other words, having a finite set of data, a model selec-
tion step defined by the principle consists of two aspects which needs to be considered in parallel
i) the quality of fitting training data (empirical error) and ii) the complexity of the hypothesis
space where the final model is constructed. Over-complex models would fit training data perfectly
well, but they may show high prediction or classification errors when dealing with new, previously
unobserved, testing data. Vapnik and Chervonenkis (1971) introduced the concept of the VC di-
mension (for Vapnik-Chervonenkis dimension) which can be used as a measure of the complexity
of a hypothesis space in which learning machines are constructed. Motivated by this concept of
the VC dimension very powerful support vector machines (SVM) for classification were constructed
(Cristianini & Shawe-Taylor, 2000; Schölkopf & Smola, 2002; Vapnik, 1998). For real-valued func-
tion approximations, including regression tasks, the SRM principle motivated the development of
new, and renewal of previous theoretical and practical results of regularization theory (Girosi et al.,
1995). Regularization theory was proposed in the 1960’s by Tichonov and Ivanov (Ivanov, 1976;
Tikhonov, 1963). Later, Kimeldorf and Wahba (1971) proved the important representer theorem,
which also applies to kernel learning algorithms, including SVM. Using a less rigorous mathematical
language, the representer theorem defines the form of an approximation or regression function f(x)
constructed in a functional space H and minimizing the following functional form

min
f∈H

Rreg =
n

∑

i=1

L(yi, f(xi)) + ξ‖f‖2H (9)

where L(yi, f(xi)) is a loss function measuring point-wise difference between observed values {yi}ni=1

and their approximations {f(xi)}ni=1. A typical example of L would be the squared loss (yi−f(xi))
2.

The regularization term ξ is a positive number controlling the trade-off between approximating
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properties and the smoothness of f . The squared norm ‖f‖2H is sometimes called the ‘stabilizer’.
The representer theorem states that the solution of (9) can be always written in the form

f(x) =
n

∑

i=1

dik(x,xi) (10)

where {di}ni=1 are real-value coefficients and k(x,xi) is a symmetric positive definite function of
two variables called the kernel function. Next, the properties and specific relations between the
space H and the kernel function k will be discussed.

First, return to the mapping defined in (8) and consider the mappings Φ(x), Φ(y) ∈ F of the
two points x,y ∈ X

x = (x1, x2) → Φ(x) = (x2
1,
√

2x1x2, x
2
2)

y = (y1, y2) → Φ(y) = (y2
1,
√

2y1y2, y
2
2)

Now compute a dot product between these two mappings

〈Φ(x),Φ(y)〉 = (x2
1,
√

2x1x2, x
2
2)

T (y2
1,
√

2y1y2, y
2
2)

= ((x1, x2)
T (y1, y2))

2

= 〈x,y〉2

It becomes clear that 〈x,y〉2 corresponds to a canonical (Euclidean) dot product in the space F
where the input data were transformed by Φ. This is an important concept where computation of a
dot product between two vectors in the feature space F can be replaced by evaluating the function
〈x,y〉2 instead; that is, by computing a square value of a dot product between the two original
points x,y in X . In our previous example with the 250-dimensional input space of absorbances
this would mean to evaluate square values of the dot product between two 250-dimensional vectors
instead of computing the dot product of two 31375-dimensional vectors in the mapped space. More
interestingly the function 〈x,y〉2 satisfies the Mercer theorem conditions (Cristianini & Shawe-
Taylor, 2000; Mercer, 1909) and it is a valid kernel function known as the second order polynomial
kernel k(x,y) = 〈x,y〉2. The Moore-Aronszajn theorem establishes the fact that for any kernel
function, there exists a unique functional space, called a reproducing kernel Hilbert space (RKHS)
(Aronszajn, 1950). Now, return to the representer theorem and define H to be a RKHS corre-
sponding to a kernel function k. The link between the RKHS space H defined by k and a space of
mapped features vectors F follows from Mercer’s theorem. Any kernel function can be written in
the form

k(x,y) =
DH
∑

i=1

αiψi(x)ψi(y) = Φ(x)T Φ(y) = 〈Φ(x),Φ(y)〉

where {ψi}DH
i=1 is a sequence of linearly independent functions, {αi}DH

i=1 are positive numbers and
DH ≤ ∞ is the dimension of the space H. Following this relation the feature map Φ can be written
as

Φ : X → F
x → Φ(x) = (

√
α1ψ1(x),

√
α2ψ2(x), . . . ,

√
αDH

ψDH
(x))

Thus, if we are only interested in the computation of dot products in F , it does not matter how F
was constructed and simply all dot products can be replaced by a unique kernel function associated
with F . This is important to note because different feature spaces associated with the same kernel
function can be constructed (Schölkopf & Smola, 2002). In literature, this replacement of a dot
product with the kernel function value is known as the kernel trick method.

The polynomial kernel function k(x,y) = 〈x,y〉d is a simple extension of the above mentioned
second order polynomial mapping by considering a feature space of all monomials of d-th order.
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Another kernel function widely used in practice is the Gaussian kernel function k(x,y) = e(−
‖x−y‖2

δ
),

where δ > 0 determines the width of the function. Different kernel functions have been used and con-
structed (Cristianini & Shawe-Taylor, 2000; Saitoh, 1997; Schölkopf & Smola, 2002; Shawe-Taylor
& Cristianini, 2004). Interestingly, a linear kernel k(x,y) = 〈x,y〉 = xTy is also an admissible
kernel function. Thus, the linear kernel principal component analysis (PCA) and linear kernel PLS
methods (Rännar et al., 1994; Wu, Massarat, & De Jong, 1997), previously developed to reduce
computational costs in the case where the input data dimension exceeds the number of observed
samples (n < N), can be considered belonging to the framework of kernel learning.

The recently developed theory of kernel learning has also been applied to PLS. The nonlinear
kernel PLS methodology for modeling relations between sets of observed variables, regression and
classification problems was proposed by Rosipal and Trejo (2001) and Rosipal et al. (2003). The idea
of kernel PLS is based on a nonlinear mapping of the original data from X into a high-dimensional
feature space F where a linear PLS model is constructed.

Define the Gram matrix K of the cross dot products between all mapped input data points,
that is, K = ΦΦT , where Φ denotes the matrix of the mapped X -space data {Φ(xi) ∈ F}ni=1.
The kernel trick implies that the elements i, j of K are equal to the values of the kernel function
k(xi,xj). Further consider that the mapped data were centered; that is, Φ is a zero-mean matrix.
This can be easily achieved by directly centering K and explicit manipulation of Φ is not needed
(Schölkopf, Smola, & Müller, 1998; Rosipal & Trejo, 2001). Denote by In an n-dimensional identity
matrix and by 1n a vector of ones with the length of n. The centered Gram matrix can be then
computed as K← (In − 1

n
1n1

T
n )K(In − 1

n
1n1

T
n ).

Now, consider a modified version of the NIPALS algorithm where steps 1 and 3 are merged and
the score vectors t and u are scaled to unit norm instead of scaling the weight vectors w and c.
The obtained kernel form of the NIPALS algorithm is as follows (Rosipal & Trejo, 2001)1

1) t = ΦΦTu = Ku 4) u = Yc
2) ‖t‖ → 1 5) ‖u‖ → 1
3) c = YT t

Although step 2 guarantees orthonormality of the score vectors, the score vectors can be rescaled
to follow the standard linear NIPALS algorithm with the unit norm weight vectors w (Rännar et
al., 1994). In the following the unit norm orthonormal score vectors will be considered; that is,
(TTT)−1 = I.

Note that steps 3 and 4 can be further merged which may become useful in applications where
an analogous kernel mapping Ψ of the Y-space data is considered; that is, the Gram matrix
Ky = ΨΨT of the cross dot products between all mapped output data is constructed. Then, the
kernel NIPALS algorithm consists of the following four steps

1) t = Ku 3) u = Kyt
2) ‖t‖ → 1 4) ‖u‖ → 1

This form of kernel PLS can be useful when one is interested in modeling symmetric relationships
between two sets of data. This is known as the PLS Mode A method (Rosipal & Krämer, 2006;
Wegelin, 2000; H. Wold, 1985). The above mentioned kernel form then represents the kernel PLS
Mode A form which has a close connection to the kernel CCA method (De Bie et al., 2005).

The important part of the iterative PLS algorithm is the deflation step. In the kernel PLS
approach the elements of a feature space F where data are mapped are usually not accessible and

1In the case of the one-dimensional Y-space computationally more efficient kernel PLS algorithms have been
proposed (Momma, 2005; Rosipal et al., 2003).
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the deflation scheme (5) needs to be replaced by its kernel variant (Rosipal & Trejo, 2001)

K← K− ttTK−KttT + ttTKttT = (I− ttT )K(I− ttT )

Now continue with the kernel analogy of the linear PLS model defined in the previous section.
While the kernel from of the model (6) remains the same,2 the kernel variant of the model (7) has
the following form

Y = ΦB + F∗

where the estimate of B is now

B = ΦTU(TTKU)−1TTY

Denote by dm = U(TTKU)−1TTym, m = 1, . . . ,M , where the (n × 1) vector ym represents
the m-th output variable. Then the kernel PLS regression estimate of the m-th output for a given
input sample x can be written in the form

ŷm = Φ(x)TΦTdm =
n

∑

i=1

dm
i k(x,xi)

which resembles the solution (10) of the representer theorem. However, the form of regularization
in PLS differs from the penalized regression models where a direct penalization of regression coeffi-
cients is the part of an optimized formula. Therefore, in the case of KPLS regression, the functional
form (9) of the representer theorem cannot be straightforwardly formulated. Penalization propri-
eties of PLS have been discussed and compared with other penalized regression models elsewhere
(for example see Lingjærde & Christophersen, 2000; Rosipal & Krämer, 2006).

By considering the kernel variant of the model (6), the kernel PLS regression estimate ŷm can
be also written as

ŷm = cm1 t1(x) + cm2 t2(x) + . . .+ cmp tp(x) =
p

∑

i=1

cmi ti(x)

where cm = TTym is the estimate of a vector of regression coefficients for the m-th regression
model. The notation {ti(x)}pi=1 stresses the fact that the score vectors can now be understood as
nonlinear functions sampled at the data points x. The following example demonstrates this point.

In Figure 2 an example of kernel PLS regression is depicted. One hundred uniformly spaced
points in the range [0, 3.25] were taken and the corresponding values of the function z(x) =
4.26(e−x−4e−2x +3e−3x) were computed. The function was used by Wahba (1990) to demonstrate
smoothing spline properties. An additional sample of one hundred points representing noise was
generated following the Gaussian distribution with zero-mean and variance equal to 0.04. These
points were added to the computed values of z and subsequently the values were centered by the
mean. The Gaussian kernel with the width parameter δ equal to 1.8 was used. The extracted score
vectors plotted as a function of the input points x are depicted in Figure 3.

Note the following very important aspect about the number of kernel PLS score vectors. In
contrast to linear PLS or Type II nonlinear PLS described next, the number of possible kernel PLS
score vectors is given by the rank of K, not by the rank of X. The rank of K is either given by n,
the number of different sample points, or by the dimensionality DH of F if n < DH. However, in
practice this is usually not the case because data are mapped in a way that n << DH. Centering of

2Now considering the matrices of score vectors T and regression coefficients C to be computed in F .
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Figure 2: An example of kernel PLS regression. The generated function z(x) = 4.26(e−x− 4e−2x +
3e−3x) is shown as a thick solid line. Dot markers represent noisy form of z used as training output
points in kernel PLS regression. Kernel PLS regression using the first one, four and nine score
vectors is shown as a dashed, thin solid, and dash-dotted line, respectively. The individual score
vectors are plotted in Figure 3.

K will remove one degree of freedom, therefore the rank of K is in general equal to min(DH, n−1).
In the particular example depicted in Figure 2, the original input space dimension is equal to one
and linear or Type II nonlinear PLS can work with one PLS score vector only. However, the kernel
PLS method can in theory extract up to 99 nonlinear PLS score vectors. Indeed, to illustrate this
point the first five and the ninth score vectors are depicted in Figure 3. This important aspect of
finding a ‘finer’ data decomposition and representation is similar to the properties of kernel PCA
as already discussed in (Schölkopf et al., 1998).

Returning to Figure 3, it can be observed that while the first three to four score vectors follow
the shape of the approximated function itself, the higher number score vectors start to model the
‘wiggling’ noisy part of the investigated function. This becomes evident in the last (bottom right)
subplot where the ninth score vector is depicted. Note that the score vectors are extracted such
that they increasingly describe overall variance in the input data space and more interestingly they
also describe the overall variance of the observed output data samples. Smola, Schölkopf, and
Müller (1998) has theoretically shown that by choosing the flattest function in a feature space F ,
conditioned by ‘good’ smoothing properties of the selected kernel function, a smooth function in
the input space can be obtained. The term flat function needs to be understood as a linear re-
gression model where the penalization of, in absolute value, large regression coefficients is applied.
Shrinkage (or regularized least-square) regression methods like ridge regression, principal compo-
nent regression or PLS belong to this category, although each of these methods applies a specific
principle of penalization (Butler & Denham, 2000; Frank & Friedman, 1993; Goutis, 1996; Krämer,
2007; Lingjærde & Christophersen, 2000; Rosipal & Krämer, 2006).

Finally, I discuss the smoothing proprieties of a kernel mapping. By using different kernel
functions feature spaces with different approximation properties are induced. Using the cubic
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Figure 3: The first five and the ninth (from top left to bottom right) F-space score vectors ti(x), i =
1, . . . , 5, 9 computed from noisy signal described in Figure 2. The generated function z without noise
is shown dash-dotted.

polynomial kernel will induce a feature space with higher approximation abilities to fit polyno-
mial functions of the third or higher orders in comparison to the second order polynomial kernel.
Similarly, by selecting the Gaussian kernel with different values of the width term δ corresponds
to choosing feature spaces with different smoothing properties (Girosi, 1998). In general, wider
Gaussian kernels will more strongly penalize higher frequency components resulting in smoother
estimates. This is demonstrated in Figure 4. Thus, the kernel PLS approach is associated not
only with a proper selection of the final number of score vectors but also with a proper selection
of the kernel function. This needs to be balanced through the model selection method used. Al-
though cross-validation is usually applied, recently, estimating the effective degrees of freedom in
kernel PLS, Krämer and Braun (2007), have discussed and compared several other model selection
criteria.

Type II: Nonlinear inner relation

S. Wold et al. (1989) were the first to extend the linear PLS model to its nonlinear form. They
have done this by replacing the linear inner relation (4) between the score vectors t and u by a
nonlinear model

u = g(t) + h = g(X,w) + h (11)

where g represents a continuous nonlinear function. Again, h denotes a vector of residuals. The
relation between each pair of latent variables is modeled separately; that is, in general a different
form of the nonlinear function g can be used for each pair t and u. Polynomial functions, smoothing
splines, artificial neural networks or radial basis function networks have been used to model g.
Importantly, in contrast to the Type I nonlinear PLS models, the assumption that the score vectors
t and u are linear projections of the original variables is kept. This has a significant consequence
towards the modification of the original NIPALS algorithm described in the previous linear PLS
section. It can be observed that the vector of weights w, computed in the first step of the NIPALS
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Figure 4: Examples of kernel PLS regression using different values δ of the Gaussian kernel function
but the same number of nine score vectors. A dash-dotted line represents the model depicted in
Figure 2 with the value of δ = 1.8. A thin solid line represents the model with the extremely small
value δ = 0.01. Tendency of this model to follow noise elements represented by dot markers is
clearly observed. The generated function without noise is shown as a thick solid line.

algorithm (3), represents the sample covariance between the output space score vector u and the
input space data matrix X. However, the use of a nonlinear model to relate the score vectors in the
inner relation affects the computation of w. Although w represents the association among variables
of X and u also in nonlinear PLS, this association will be closely related to the covariance values
only if the nonlinear mapping between latent variables is monotonic and slightly nonlinear (curved).
If this is not the case, an update of w needs to be considered. Thus, two different approaches have
been proposed and used.

In the first approach no update of w is applied. S. Wold et al. (1989) named this approach
the quick and dirty nonlinear PLS algorithm and it consists of the standard NIPALS steps until
the convergence and the subsequent nonlinear fitting of the inner relation between the extracted
pair of the t and u vectors. Different nonlinear models were used to fit this relation: higher order
polynomial regression (S. Wold et al., 1989), smoothing splines or different types of smoothing
estimators (Frank, 1990, 1995), artificial neural networks (Qin & McAvoy, 1992) and radial basis
function networks (Wilson et al., 1997).

In the second group of approaches a nonlinear function modeling the inner relation is used to
update an initial linear PLS estimate of the weight vector w. S. Wold et al. (1989) proposed to
update w by means of a Newton-Raphson-like linearization of g. The procedure thus consists of
a first-order Taylor series expansion of g, followed by the calculation of the correction term ∆w
which is used to update w. So, consider the nonlinear inner relation (11) where g(t) = g(X,w)
is continuous and differentiable with respect to w. The second-order Taylor expansion of (11) has
the form

û = u00 +
∂g

∂w

∣

∣

∣

∣

00
∆w (12)
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where u00 = g(t) is the value of g at the known value of t. Similarly, ∂g
∂w
|00 stands for the partial

derivatives of g numerically evaluated at the same known value of t. The second term of (12) can
be written element-wise as

∂g

∂w

∣

∣

∣

∣

00
∆w =

N
∑

i=1

∂g

∂wi

∣

∣

∣

∣

00
∆wi

At this point several different methods to compute the correction ∆w were proposed. To simplify
further notation consider the matrix form of the linear approximation û

û = Zv

where Z = [u00
∂g
∂w
|00] and v = [1 ∆w]T . The following variants to compute ∆w were suggested:

S. Wold et al. (1989) proposed to compute ∆w by reflecting the first steps of the ordinary
NIPALS algorithm

1. v = (ZTZ)−1ZT û (S. Wold et al. (1989) original formula: v = ZT û/(ûT û) )

2. ‖v‖ → 1

3. s = Zv

4. b = uT s/(sT s)

5. for ∆w take the corresponding elements of bv; that is, elements at the 2, . . . , (N + 1)
positions

Correspondence of the first three steps of the original S. Wold et al. (1989) algorithm (for step 1 see
formula in brackets) with the first steps of NIPALS can be easily observed by replacing v with w
and s with t. However, this original idea of the regression of v on Z , that is, assuming the relation
Z = ûv instead of û = Zv, was later questioned by Hasegawa, Kimura, Miyashita, and Funatsu
(1996). In a personal communication the authors verified this error with S. Wold and they have
applied the correct formula v = (ZTZ)−1ZT û. This point and correction was later also repeated
by Baffi et al. (1999).

Baffi et al. (1999), initiated by the S. Wold et al. (1989) idea of nonlinear PLS, proposed a
different way for updating w. The approach, denoted error-based, considers the difference

û − u00 = ∂g
∂w

∣

∣

∣

00
∆w at the first step. Next, the authors replace the Newton-Raphson

linearization estimate û by the actual value of u computed in the last step of the NIPALS
loop as u = Yc. This leads to the following definition of a mismatch e

e = u− u00 =
∂g

∂w

∣

∣

∣

∣

00
∆w = Zw∆w (13)

where the matrix Zw = [ ∂g
∂w
|00] consists of the partial derivatives { ∂g

∂wi
|00}Ni=1. From this

mismatch relation ∆w can be directly computed by regressing the mismatch e on Zw, that
is,

∆w = (ZT
wZw)−1ZT

we

It needs to be mentioned that both S. Wold et al. (1989) and Baffi et al. (1999) considered the
case where g is also dependent on variables different than w. More precisely, they considered the
quadratic relation u = b0 + b1t + b2t

2 + h. In this case partial derivatives of g with respect to the
elements of the vector b = [b0, b1, b2] can be added to Z or Zw matrix, respectively, and ∆b to the
vector v.
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Finally, the whole nonlinear PLS method consisting of the NIPALS steps and the steps for
updating w is summarized below. The method starts with a random initialization of u. The
following steps are repeated until convergence

1) w = XTu/(uTu) 7) ‖c‖ → 1
2) ‖w‖ → 1 8) u = Yc
3) t = Xw 9) compute ∆w
4) fit g(.) using u, t 10) w = w + ∆w
5) u00 = g(t) 11) go to step 2)
6) c = YTu00/(u

T
00u00)

Detailed description of these steps can be found in S. Wold et al. (1989); Baffi et al. (1999) or
S. Wold (1992).

Discussion and Future Research Directions

Both Type I and Type II represent two general principles for constructing nonlinear PLS models.
Many variants of nonlinear PLS can be constructed by applying the wide variety of existing nonlin-
ear methods developed outside of the chemometrics research field. An example is the GIFI approach
to nonlinear PLS (Berglund et al., 2001). The method developed in mathematical statistics con-
sists of quantizing the original X variables into bins. A subsequent representation of each bin with
a 1/0 dummy variable then reflects whether the observed continuous value falls into a bin or not
(Michailidis & De Leeuw, 1998). The method fits into Type I nonlinear PLS where the quantization
represent a mapping of the observed variables into a dummy representation. Similarly, different
nonlinear models can be used in Type II nonlinear PLS to represent the inner relation g function.
When considering quick and dirty nonlinear PLS, that is, nonlinear PLS without updating of w,
almost any nonlinear model can be used. This is different from the situation when w is updated by
any of the rules described in the previous subsection. In this case the Newton-Raphson procedure
requires that the nonlinear function g is continuous and differentiable with respect to w. Moreover,
a simultaneous mathematical optimization of the inner relation function and computation of new
w from a linearization of the function is not always efficient and convergence to an optimal solution
is sometimes not achieved. To relieve these limits Yoshida and Funatsu (1997) and Li, Mei, and
Cong (1999) proposed to use a genetic algorithm based optimization technique to simultaneously
update g and w. Interestingly, in the work of Yoshida and Funatsu (1997) this was done without a
linearization of g. Therefore, a wider set of nonlinear functions to represent g can be used because
the criterion of continuity and differentiability can be dropped. In theory, recently extensively used
and now-popular concept of kernel learning cannot only by used in the quick and dirty nonlinear
PLS scenario, but also in the case where an appropriate update of w would be advantageous. An
example can be a support vector regression model for g. Finally, Hiden et al. (1998) and Searson
et al. (2007) extended the concept of genetic programming to represent and estimate the inner
relation model itself.

Comparing the two types of nonlinear PLS it is difficult to define the favorable methodology.
While Type I is easily implementable, often computationally less demanding and capable to model
complex nonlinear relations, it usually leads to a loss of the interpretability of the results with
respect to the original data.3 On the other hand it is not difficult to construct data situations
where the Type II approach of keeping latent variables to be linear projections of the original data

3One needs to be very careful about proper balancing interpretability and prediction ability of the used model. If
the model fits and predicts data poorly interpretation of the observed relations can often be misleading.



16

may not be adequate. Consider the situation depicted in the left part of Figure 1. Taking any
one-dimensional linear projection would create a score vector where both classes would be mixed
up with a low level of separability. Thus, a better choice can be an appropriate initial nonlinear
mapping of the data. However, consider the same task but add to the problem several dimensions
with random variables possessing no separability proprieties with respect to the two classes. In
this case an appropriate projection to a lower, optimally two-dimensional original problem space,
followed by a nonlinear mapping of the obtained score vectors can be a better choice. In practice a
researcher needs to decide about the adequacy of using a particular method based on the problem in
hands and requirements like simplicity of the solution, implementation difficulties or interpretation
of the results.

Since the work of S. Wold et al. (1989), there have been twenty years of development of the
nonlinear PLS concepts, which have resulted in a wide variety of different models. Extensive
experimental work has been carried out to compare the studied nonlinear PLS models with the
existing concepts of nonlinear modeling developed outside of chemometrics. However, much less
research has been carried out to compare the nonlinear PLS models themselves. Within the area of
Type II models, Baffi et al. (1999) numerically compared the approach of S. Wold et al. (1989) with
their error-based approach. On a synthetic and a real data set they demonstrated better prediction
abilities of the error-based approach; in addition, this was achieved with a lower number of latent
variables. Similarly, in the area of the Type I models, the kernel PLS method was compared with
approaches within the area of kernel learning. The method was proved to be competitive with
the classification and regression approaches like SVM, kernel ridge regression or kernel Fischer
discriminant analysis (Rosipal et al., 2003; Rosipal & Trejo, 2001). However, a rigorous and
thorough experimental and theoretical comparison of different Type I and Type II nonlinear PLS
models is lacking.

Finally, there is no restriction on combining the Type I and Type II nonlinear PLS concepts.
This can be done by mapping observed data first (Type I) and applying a Type II nonlinear PLS
model on transformed data. Would this concept of applying two nonlinear maps be beneficial? In a
specific task of smoothing electroencephalographic (EEG) signals it has been observed that better
results can be obtained by applying locally weighted PLS regression in a feature space, that is,
the nonlinear kernel PLS method was modified by applying a nonlinear PLS model in the mapped
data space (Rosipal & Trejo, 2004). Recall that locally weighted PLS regression approximates
nonlinearity by a series of local linear models (Cleveland, 1979; Næs & Isaksson, 1992).

Conclusion

There is no doubt that nonlinear PLS modeling represent an important concept for analysis of data
sets with nonlinear relationships. However, until recently and in contrast to linear PLS, nonlinear
PLS has been mainly used in the chemical data analysis domain. It was the new concept of non-
linear kernel PLS, representing an elegant way of dealing with nonlinear aspects of measured data,
which has considerably extended the applicability of nonlinear PLS into a wider area of research
fields (Hardoon, Ajanki, Puolamaki, Shawe-Taylor, & Kaski, 2007; Lee, Wu, Huntbatch, & Yang,
2007; Mu, Nandi, & Rangayyan, 2007; Saunders, Hardoon, Shawe-Taylor, & Widmer, 2008; Trejo
et al., 2006). The main reason is the fact that the kernel PLS method keeps computational and
implementation simplicity of linear PLS while providing a powerful modeling, regression, discrim-
ination or classification tool. Moreover, kernel PLS has been proven to be competitive with the
state-of-the-art SVM and other kernel regression and classification methods. However, it would
be a big mistake to prefer the kernel method over the other nonlinear PLS approaches, especially
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Type II nonlinear PLS. The PLS method projects original data onto a more compact space of latent
variables. Among many advantages of such an approach is the ability to analyze and interpret the
importance of individual observed variables. The feature which is somehow lost in kernel learning,
where usually not easily interpretable nonlinear kernel mapping is applied. The interpretabillity is
an important factor not only in chemical data analysis but also in other research and application
domains. For example, in an experimental design where many insignificant terms are measured,
PLS results can guide the practitioner into more compact experimental settings with a significant
cost reduction and without a high risk associated with the ‘blind’ variables deletion.

The chapter reviewed two main concepts of nonlinear PLS. The aim of the review was to provide
fundamental and unifying insights into the understanding of individual methods. Hopefully, this
review will draw more attention to developing new nonlinear PLS methods that may overcome
drawbacks of the existing approaches.

At the time of writing, I was not aware of a comprehensive software covering all of the described
nonlinear PLS methods. A set of Matlab R© routines for kernel PLS is available upon request.
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