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A B S T R A C T

Objective: Removing ocular artefacts due to eye blinks and movement is an essential preprocessing step in
an electroencephalogram (EEG) analysis. Most ocular correction algorithms are based on linear regression or
blind source separation algorithms such as independent component analysis (ICA). Despite their popularity and
wide applicability, they also show several areas for improvement such as requiring separate electrooculogram
(EOG) signals or distortions of the EEG signals due to overcorrections.
Methods: Preliminary studies have shown tensor decomposition as a promising alternative to the ocular
artifact correction problem. To extend this line of research, we propose the SPECTER algorithm, which is
the Signal sPECtrum Tensor decomposition and Eye blink Removal algorithm.
Results: On real data, the algorithm provided comparable or superior performance to ICA- or regression-based
artifact correction methods and outperformed existing tensor-based approaches for eye blink removal. SPECTER
also leads to accurate results when traditional eye blink correction methods distort EEG signal.
Conclusion: In this study, we do not aim to compete with ICA, regression-based, or other eye blink removal
approaches, whose good performance has been proven in the literature. We propose the SPECTER algorithm
as an alternative and flexible method in situations where traditional algorithms may fail or identification of
the latent eye blink tensor components is preferred while inspecting EEG data.
Significance: SPECTER’s functionality extends beyond eye blink removal, allowing it to remove a variety of
other artifacts, or even more specific EEG rhythms or other EEG elements.
Introduction

The human electroencephalogram (EEG) recordings may contain
artifacts due to eye movements or blinking. Omitting time segments
with eye blink artifacts, manually or automatically, usually leads to
an unnecessary loss of useful information. Filtering out unwanted eye
movement or blinking signals while retaining the important features of
brain potentials within the EEG signal should be superior to discarding
segments of recordings. However, it is a difficult and not yet optimally
solved task. A wide range of eye blink correction methods has been
described in the literature. Based on the type of approach, they can be
divided into two categories - regression-based methods and techniques
that use component (latent space) decomposition, also referred to as
blind source separation.

The regression-based methods [1,2] assume that the scalp EEG
consists of a linear combination of ocular and brain potentials. Con-
sequently, subtracting an appropriate multiple of one or more elec-
trooculogram (EOG) channels from an EEG channel results in an eye

∗ Corresponding author.
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blink-free EEG signal. The transmission coefficients between EOG and
EEG channels are estimated by regression analysis.

However, regression-based methods only apply when the EOG mea-
surement is present or can be properly estimated from frontal EEG,
which is often not optimal. Moreover, the brain potentials can also con-
taminate EOG recordings. Consequently, subtracting an EOG multiple
from the EEG signal may remove important information by reducing
neural activities common to the frontal or reference electrodes [3]. This
problem was shown to be partially solved by applying an appropriate
EOG filter [4].

The second set of ocular correction methods applies when EOG
measurement is missing. The EEG signal is decomposed into latent
(unobserved) components that are subsequently checked for blink-
related properties. The ‘‘cleaned’’ EEG signal can be reconstructed in
two ways - either as a linear combination of the remaining non-blink
components or by removing the blink components from the original
data [5,6].
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In the time domain, the most popular methods for this purpose are
principal component analysis (PCA) [6,7] and independent component
analysis (ICA) [5,8,9]. In both cases, the EEG signal (time points ×
lectrodes) is decomposed into a set of latent components represented
y their temporal and spatial characteristics (signatures). Frequency
haracteristics are obtained by the spectral analysis of the component’s
emporal signature.

The limitation of PCA lies in the assumption of the components’
rthogonality which is rarely satisfied in the real data case [5]. This
ssumption is replaced by component independence in ICA. The ICA-
ased ocular correction algorithms are widely used in the EEG lite-
ature [10]. However, several authors report problems with distortion
f the EEG signal when a version of ICA is applied to eye blink-
ontaminated simulated or real EEG data [4]. In some cases, the
pectrum of ICA-corrected EEG signal may lie above the original sig-
al spectrum, implying the presence of artificial contamination in
CA-corrected EEG.

The multichannel EEG signal can also be represented as an 𝑁-way
rray or tensor, for example, in the time-space-frequency domain. Ten-
or decomposition methods can successfully analyze the latent structure
f EEG tensor [11–15]. In our previous studies [16,17], the parallel
actor analysis (PARAFAC) [18,19] and the Tucker model [20] suc-
essfully detected subject-specific narrow-band EEG oscillatory rhythms
nd were shown to overcome traditional matrix decomposition ap-
roaches [21]. We argue that tensor decomposition methods are also
pplicable to ocular correction problems.

A short remark about artifact detection using tensor decomposition,
specially PARAFAC, can be found in [11]. Acar et al. [22] used the
ucker model to detect and remove eye blinks and other artifacts from
EG tensor data. However, the ‘‘cleaned’’ tensor was not transformed
ack to an EEG signal but formed an input to another tensor decompo-
ition step to detect the seizure origin of epilepsy. The PARAFAC model
as applied to a fourth-order EEG tensor also in [23], and the spatial

ignatures of eye blink-related components were used as a template in
he spatially constrained blind signal separation algorithm.

The most similar procedure to ours is described in [24]. In this
ase, the EEG tensor is constructed by the continuous wavelet transform
CWT), and the Tucker model is applied. Then, the temporal signatures
elated to eye blink artifacts are detected and set to zero. Finally, the
econstructed ‘‘cleaned’’ tensor is transformed back to the time-space
omain using the inverse wavelet transform (iCWT). This algorithm
ill be denoted as CWT-Tucker ocular correction (CWT-Tuc-OC) in the

ollowing text.
In this study, we propose to combine artifact detection by tensor

ecomposition and signal reconstruction from the amplitude spectrum
escribed in [25]. Therefore, it is called a SPECTER - the Signal
PECtrum Tensor decomposition and Eye blink Removal. In contrast
o [24], we focus on the amplitude spectrum of windowed EEG signal
n the tensor construction step instead of CWT. As we will show
ater, this step significantly simplifies computational issues which may
ccur when CWT is applied. Moreover, the latent components extracted
rom the amplitude spectrum allow a more natural neurophysiological
nterpretation than CWT-Tuc-OC.

In the paper, the results of SPECTER are compared with the widely
sed regression-based Gratton-Coles & Donchin (GCD) algorithm [2]
nd ICA-based ocular correction method. The CWT-Tuc-OC algorithm
rovided inferior results and is described in Appendix B.

Because detecting and evaluating the effect of EOG artifacts on the
EG recordings is highly subjective, we do not aim to compete with the
xisting popular ocular correction algorithms. The proposed algorithm
s an alternative approach where ICA or other traditional methods do
ot work well or lead to distortion of the EEG signal.

The article is organized as follows: Section 1 starts with the defi-
ition of notations, a description of tensor decomposition methods, an
pproach for tensor component removal, and the inverse transforma-

ion of the spectrum to signal. The proposed algorithm is described in

2 
Section 2. Section 3 introduces two real EEG datasets contaminated
with eye blink artifacts which are used in Section 4 to demonstrate
the performance of the SPECTER algorithm in comparison to conven-
tional methods. The advantages and disadvantages of the methods are
discussed, and the conclusions are stated in Section 5.

1. Methods

1.1. Basic notation

In the following text, an underlined uppercase letter 𝑋 ∈
R𝐽1×𝐽2×⋯×𝐽𝑁 represents an 𝑁-way tensor (𝑁 ≥ 3). Matrices are denoted
by uppercase letters 𝑋 ∈ R𝐽×𝐾 , vectors by bold lowercase letters 𝐱 ∈ R𝐽

and scalars by lowercase letters 𝑥 ∈ R. An 𝑚 × 𝑚 identity matrix is
denoted by I𝑚, and O𝑚×𝑛 represent an 𝑚 × 𝑛 zero matrix. The notation
and definition of the Kronecker (⊗) and outer product (◦) follows the
omenclature used in [26, Section 1.4.5].

The Frobenius norm of a tensor 𝑋 ∈ R𝐽1×𝐽2×⋯×𝐽𝑁 is defined by the
following formula

‖𝑋‖𝐹𝑟𝑜 =

√

√

√

√

√

𝐽1
∑

𝑗1=1
⋯

𝐽𝑁
∑

𝑗𝑁=1
𝑥2𝑗1…𝑗𝑁

.

A one-dimensional tensor fragment, which we obtain by fixing
all indices except one, will be denoted as a tensor fiber. Fixing all
indices except two results into a tensor slice (two-dimensional tensor
fragment) [26].

A tensor unfolding or matricization describes the operation that
turns a tensor into a matrix. In this study we focus only on the mode-n
unfolding as described in [26], where the mode-n fibers of a tensor
𝑋 ∈ R𝐽1×𝐽2×⋯×𝐽𝑁 are arranged as columns of matrix 𝑋(𝑛) ∈ R𝐽𝑛×

∏

𝑘≠𝑛 𝐽𝑘 .

.2. Tensor decomposition methods

The parallel factor analysis (PARAFAC) [18,19] and the Tucker
odel [20] represent two widely used approaches for tensor decom-
osition. In both models, an 𝑁-way tensor 𝑋 ∈ R𝐽1×𝐽2×⋯×𝐽𝑁 is decom-

posed into a core (mixing) tensor

𝐺 ∈ R𝐾1×𝐾2×⋯×𝐾𝑁

and 𝑁 component matrices

𝐴(𝑛) =
(

𝐚(𝑛)1 , 𝐚(𝑛)2 ,… , 𝐚(𝑛)𝐾𝑛

)

∈ R𝐽𝑛×𝐾𝑛 , 𝑛 = 1,…𝑁,

where 𝐾𝑛, 𝑛 = 1,… , 𝑁 is the number of latent components in the 𝑛th
mode.

The Tucker model follows the formula

𝑋 = 𝐺 ×1 𝐴
(1) ×2 𝐴

(2) ×3 …×𝑁 𝐴(𝑁) + 𝐸,

𝑋 =
𝐾1
∑

𝑘1=1

𝐾2
∑

𝑘2=1
⋯

𝐾𝑁
∑

𝑘𝑁=1
𝑔𝑘1𝑘2…𝑘𝑁 𝐚(1)𝑘1

◦𝐚(2)𝑘2
◦… ◦𝐚(𝑁)

𝑘𝑁
+ 𝐸,

𝑥𝑗1𝑗2…𝑗𝑁 =
𝐾1
∑

𝑘1=1

𝐾2
∑

𝑘2=1
⋯

𝐾𝑁
∑

𝑘𝑁=1
𝑔𝑘1𝑘2…𝑘𝑁 𝑎(1)𝑗1𝑘1

𝑎(2)𝑗2𝑘2
… 𝑎(𝑁)

𝑗𝑁𝑘𝑁
+ 𝑒𝑗1𝑗2…𝑗𝑁 , (1)

where an 𝑁-way tensor 𝐸 ∈ R𝐽1×𝐽2×⋯×𝐽𝑁 represents an error term.
he tensor-matrix multiplication in the 𝑛th mode is denoted by ×𝑛, 𝑛 =
,… , 𝑁 [26].

On the other hand, the PARAFAC model assumes the same number
f components 𝐹 = 𝐾1 = ⋯ = 𝐾𝑁 in all modes and a super-diagonal

structure of 𝐺. Consequently, the PARAFAC model formula simplifies
to

𝑋 = 𝐺 ×1 𝐴
(1) ×2 𝐴

(2) ×3 …×𝑁 𝐴(𝑁) + 𝐸,

𝑋 =
𝐹
∑

𝑔𝑓𝑓…𝑓 𝐚
(1)
𝑓 ◦𝐚(2)𝑓 ◦… ◦𝐚(𝑁)

𝑓 + 𝐸,

𝑓=1
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𝑥𝑗1𝑗2…𝑗𝑁 =
𝐹
∑

𝑓=1
𝑔𝑓𝑓…𝑓 𝑎

(1)
𝑗1𝑓

𝑎(2)𝑗2𝑓
… 𝑎(𝑁)

𝑗𝑁𝑓 + 𝑒𝑗1𝑗2…𝑗𝑁 . (2)

To avoid multiplication ambiguities, component matrices 𝐴(𝑛), 𝑛 =
1,… , 𝑁 in both models are assumed to have normalized columns [26]
and are denoted as signatures in the following text [11,17,21]. In-
terpretation and stability of the decomposition can be improved by
constraining the component matrices, for example, to orthogonal [22],
nonnegative [11,14,17], uni- or bi-modal columns [21,27].

Following [11], we consider only the PARAFAC model for the eye
blink detection, mainly due to the straightforward interpretability of
the solution. This contrasts with [22,24], where the Tucker model is
preferred. Nevertheless, the whole analysis presented in this study was
repeated with the more flexible Tucker model, but we did not observe
any significant improvement in results compared to PARAFAC.

1.3. Removing components in PARAFAC

In the literature, three approaches for the eye blink removal from
the data tensor 𝑋 are described - component zeroing, component sub-
raction, and projection to the nullspace of space spanned by selected
omponents [22,24].

However, only the component subtraction was observed to be ap-
ropriate within the SPECTER algorithm. A description of the other
wo methods for both PARAFAC and Tucker model can be found in
ppendix A. Their usability and performance when applied in the
PECTER approach are discussed in Appendix A.1.

Let us assume the PARAFAC model (2), the corresponding estimated
omponent matrices 𝐴(1),… , 𝐴(𝑁), and the super-diagonal core tensor
. Let 𝑆𝑟𝑒𝑚 be an index set of artifact components to remove. Then, the
omponent subtraction step is defined as

𝑟𝑒𝑚 = 𝑋 −
∑

𝑓∈𝑆𝑟𝑒𝑚

𝑔𝑓…𝑓 𝐚
(1)
𝑓 ◦… ◦𝐚(𝑁)

𝑓 =
∑

𝑓∉𝑆𝑟𝑒𝑚

𝑔𝑓…𝑓 𝐚
(1)
𝑓 ◦… ◦𝐚(𝑁)

𝑓 + 𝐸.

.4. Spectrum to signal transformation

The amplitude spectrum can be directly computed from raw EEG,
or example, by the Fast Fourier transform. However, the inverse
rocedure – from spectrum to signal – is more complex since the phase
nformation is usually missing, and only the amplitude spectrum is
vailable.

For a given amplitude spectrum, the Griffin-Lim algorithm (GLA)
28] aims to find a complex-valued spectrogram 𝐶 satisfying two condi-
ions - absolute values of 𝐶 coincide with the given amplitude spectrum
nd 𝐶 belongs to the image of the short-time Fourier transform (STFT)
ith a given time window (consistency condition). The raw signal is

hen reconstructed from the estimated spectrogram 𝐶 by the inverse
TFT.

However, the original algorithm was shown to require too many
terations or may get stuck in a local optimum, resulting in phase
ecovery of low quality [25]. Therefore, several modifications of the
riginal GLA can be found in the literature [29–31]. In this study, we
pplied the Griffin-Lim like phase recovery via the alternating direction
ethod of multipliers (ADMMGLA) [25], which produced the most

table and satisfying results in our case.
Moreover, Masuyama, Yatabe, and Oikawa [25] claim that in some

pecific situations, it can be rather complicated to find a spectrogram
atisfying both conditions, or such a spectrogram does not have to exist.
ecause the strict equality between a given amplitude spectrum and the
bsolute value of the spectrogram is always required, they recommend
elaxing the consistency condition [25, Section III B]. The order of
elaxation is controlled by the 𝜌 ≥ 0 parameter, with 𝜌 = 0 representing
he situation with both conditions satisfied.
3 
2. SPECTER algorithm

The SPECTER algorithm combines the procedures mentioned in the
previous section - tensor decomposition of the signal spectrum, artifact
removal by component subtraction, and spectrum-to-signal transfor-
mation by ADMMGLA. To make the algorithm more readable, we
summarized it into several steps, and the graphical schema is depicted
in Fig. 1.

(1) Signal spectrum and tensor construction. The EEG signal is
divided into overlapping time windows in the first step. In this study,
we applied 0.5-second time windows with a 80% of overlap (0.4 s).
To select a time window of appropriate length, we ran the SPECTER’s
algorithm without eye blink removal step for various time windows
(0.5 s, 1 s, 1.5 s, 1.75 s, 2 s, 2.5 s, 3 s). Then, Pearson’s correlation
coefficient was computed between the original (eye-blink corrupted)
and reconstructed signal. The resulting correlations were generally
high (>0.95) but slightly decreased with the increasing window length.
However, we observed short intervals with signal distortions in the
reconstructed signal when the window length exceeds 1.75 s. Therefore
we decided to select a 0.5-second time window for this analysis.

For each time window and each electrode, the amplitude spectrum
of the EEG signal is computed by the Fast Fourier transform (FFT). The
obtained spectrum values are arranged into the tensor 𝑋 ∈ R𝐽1×𝐽2×𝐽3

+ ,
where 𝐽1 is the number of time windows, 𝐽2 is the number of electrodes,
and 𝐽3 is the number of frequencies. The tensor 𝑋 is nonnegative
because the amplitude spectrum does not include negative values.

(1a) 𝐥𝐨𝐠𝟏𝟎 transformation. After the tensor construction, it is possible
to apply tensor decomposition followed by component removal di-
rectly. However, neither component subtraction nor component zeroing
or projection to the nullspace (Appendix A) guarantees the nonnega-
tivity of the resulting tensor 𝑋𝑟𝑒𝑚. Negative values cannot represent
the spectrum of any signal, and therefore, physiological interpretation
would be missed. Moreover, the ADMMGLA method requires only
nonnegative values representing the amplitude spectrum of a signal.
Unfortunately, setting the negative values in 𝑋𝑟𝑒𝑚 to zeros would lead
to rapid distortions in the reconstructed signal.

Therefore, in our algorithm’s intermediate step, we use the 𝑙𝑜𝑔10
transform of 𝑋 before the tensor decomposition. The transformed
tensor 𝑋⋆ = 𝑙𝑜𝑔10

(

𝑋
)

∈ R𝐽1×𝐽2×𝐽3 is not nonnegative any more. But
what is more important, the inverse transformation (the power of 10)
after the tensor decomposition and component subtraction guarantees
𝑋𝑟𝑒𝑚 to be nonnegative.

2) Tensor decomposition and dominant signature pattern detec-
ion. Following [32], tensor 𝑋⋆ is centered in the first (temporal) mode

(𝑋⋆
𝑐𝑒𝑛𝑡𝑟) and the PARAFAC model with nonnegativity constraints in the

temporal, spatial and frequency modes is applied [16,17,21].
The appropriate number of components in PARAFAC is usually

selected by a priori information or using a preferred component number
selection method. However, our previous study [33] showed that many
component number selection methods must be revised for EEG data.

The cumulative component clustering procedure (tripleC) [33] was
successfully applied in our previous study focusing on EEG tensor
decomposition [17] and was shown to overcome the majority of compo-
nent number selection methods [33]. In tripleC, the results of PARAFAC
models with 1 to 𝐹𝑚𝑎𝑥 components are merged into one set and as-
signed into clusters by the non-parametric density-based clustering
(DBscan) [34]. The DBscan algorithm has two parameters [34]: (i) the
number of neighbors, which was set to two to avoid potential outlier
components, and (ii) the diameter of a component neighborhood was
chosen between 0.6 and 1 for the majority of subjects in both datasets
described in Section 3. The number of clusters varied between three
and ten mirroring the data complexity and the number of different
oscillations and artefacts.

General components are then characterized by averaged normalized
temporal, spatial, and frequency signatures of dominant clusters and
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Fig. 1. Graphical schema of SPECTER - the Signal sPECtrum Tensor decomposition and Eye blink Removal method.
(

o

form general component matrices 𝐴(1)
𝑐 (temporal), 𝐴(2)

𝑐 (spatial) and 𝐴(3)
𝑐

frequency).
In a single PARAFAC model with a fixed number of components,

ach component follows its weight represented by the corresponding
iagonal element of 𝐺. However, this information is missing after
he tripleC procedure. Nevertheless, 𝐺𝑐 can be estimated by the least

squares criterion

𝐺𝑐 ∈ argmin𝐻∈R𝐹×⋯×𝐹 ‖𝑋⋆
𝑐𝑒𝑛𝑡𝑟 −𝐻 ×1 𝐴

(1)
𝑐 ×2 𝐴

(2)
𝑐 ×3 𝐴

(3)
𝑐 ‖𝐹 , (3)

nder the super-diagonality constraints.

3) Eye blink identification and removal. General components rep-
esenting eye blink artifacts are visually selected by an expert analyst
nd subtracted from tensor 𝑋⋆ as described in Section 1.3.

The visual selection criteria include:

(i) presence of short intervals of higher amplitude in time scores
(TS),

(ii) visual overlap of time scores and EEG signal from frontal elec-
trodes like Fp1, Fp2, or Fpz (or AF3, AF4 and AFz if the signal
from the previously mentioned electrodes is unavailable),

(iii) spatial signatures with higher weights for frontal electrodes,
(iv) frequency signatures representing either oscillatory activity over

low frequencies up to 4 Hz or distributed over a set of frequencies
without one clear peak over a single frequency.

However, some users may prefer an automatic component selection.
Altogether, most algorithms used for an automatic component selection
when using ICA for eye blink removal may also be applicable in
SPECTER. In this study, we compared the results of the eye blink
component visual selection with the following approaches:

• The ADJUST algorithm [35] was initially developed for auto-
matic eye blink selection of ICA components. ADJUST selects
eye blink latent components by inspecting their spatial and tem-
poral features. We used the ADJUST plugin within the EEGLAB
software [36].

• Spearman’s correlation coefficient between component time
scores and EEG from frontal electrodes Fp1 and Fp2 (or AF3
 (

4 
and AF4 if the signal from the previously mentioned electrodes
is unavailable) [5] above a predefined threshold 𝑇𝜌. In this study,
we considered 𝑇𝜌 = 0.4.

• Kurtosis of component TS above a predefined threshold, as de-
scribed in [37]. Highly positive kurtosis indicates a peaky dis-
tribution of TS values, which is typical for eye blink-related
components [37].

3a) 𝟏𝟎𝐗 transformation:. Tensor 𝑋⋆
𝑟𝑒𝑚 is transformed back into the

nonnegative form by the following formula

𝑋𝑟𝑒𝑚 = 10𝑋
⋆
𝑟𝑒𝑚 ,

where the power of 10 to a tensor is understood in an element-wise
way.

(4) Spectrum-to-signal transformation. Finally, ADMMGLA with re-
laxed consistency condition is applied to transform the cleared spec-
trum back into the time domain. In the study, we set the 𝜌 parameter
to 0.1. The value was determined by optimizing the correlation be-
tween the original and reconstructed EEG signal using a subset of EEG
recordings.

2.1. Opposite sign and slight time shift problems

Due to the lack of phase spectrum information, the original and
reconstructed signal can follow approximately the same values but
with the opposite sign over subintervals (Fig. 2, left column). These
subintervals were observed to be consistent with the 100 ms step size
used to construct the signal spectrum1 in Section 2.

To mitigate this problem, we propose a simple heuristics. For each
100 ms time window, we computed Spearman’s correlation coefficient
𝜌 between the original and reconstructed signal. If 𝜌 was negative, the
reconstructed signal was multiplied by −1 within this time window.

1 The EEG signal was divided into 0.5-second time windows with an 80%
verlap (0.4 s). Consequently, the step size of the sliding window was 100 ms
0.1 s).
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Fig. 2. Comparison of the original EEG signal (gray) and the reconstructed signal by SPECTER (black) from four left hemisphere electrodes before (left column) and after (right
olumn) applying simple heuristics for solving the opposite sign problem. The red line depicts a zero line. In the left column, a better match would be achieved by changing the
ign of the reconstructed signal values over time subintervals (right column).
f 𝜌 was positive but insignificant, we computed the distance between
he original EEG signal and the reconstructed signal multiplied by 1
r −1 and chose a version leading to a lower distance. The heuristics
uccessfully corrected the majority of sign differences between signals
Fig. 2, right column). Nevertheless, a method for robust mitigation of
he sign problem in the reconstructed signal is still needed.

The second problem is depicted in Fig. 3. Due to signal window-
ng within the SPECTER algorithm, the reconstructed EEG signal was
bserved to be shifted either one point to the left (Fig. 3, left, black
olor) or one point to the right (Fig. 3, right, black color) in compar-
son to the original EEG signal (Fig. 3, gray color) over some short
ubintervals (≈100 ms). Due to slight time shifts in both directions,
t was impossible to shift the whole reconstructed EEG signal, either
everal time points to the left or to the right. Consequently, evaluating
he SPECTER’s performance using a correlation coefficient with the
riginal EEG signal or other statistical measures sensitive to this shift
s inappropriate; SPECTER would produce numerically inferior results
espite its superior eye blink removal performance.

The problem can be solved using the dynamic time warping algo-
ithm (DTW) [38].2 DTW tries to find an optimal warping path between
wo time series to minimize the Euclidean distance between them. Since

2 For this purpose, the MATLAB routine dtw can be used [39].
5 
the shifts between the raw EEG and reconstructed signal by SPECTER
were observed to be one point in the majority of cases and at most
three time points, it is possible to restrict the warping path to be at
most three points of the straight line fit (original time).

Finally, a solution to both these problems is to detect short inter-
vals around each eye blink in the original EEG signal and to replace
these selected intervals with corresponding reconstructed signal values.
Consequently, the EEG signal remains unchanged over the non-blink in-
tervals. For example, the time intervals with eye blinks can be detected
by an automatic thresholding method [40] originally proposed for
spike detection in neural data or another preferred eye blink detection
method.

The opposite sign and slight time shift problems are only present
when analyzing the reconstructed EEG signal in the time domain. But
what is more important, they do not affect the reconstructed signal
spectrum. Consequently, if we are interested in the eye blink-free EEG
signal spectrum rather than its analysis in the time domain, both
problems can be safely ignored.

3. Data

Two datasets with corrupted eye blink EEG signals were used to

demonstrate the SPECTER method’s ability to remove eye blinks.
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Fig. 3. Comparison of the original EEG signal (gray) and signal reconstructed by SPECTER (black) over two short time intervals consisting of 13 time points (≈100 ms).
able 1
he eyes open EEG measurements duration (in seconds) for three subjects before
SubX_pre), during (SubX_med), and after meditation (SubX_post).

_pre [s] _med [s] _post [s]

Sub1 90 393 312 301 68
Sub2 60 678 59
Sub3 61 93 65

3.1. Dataset 1

The first dataset consists of 11 EEG measurements from three
healthy adult male volunteers seated comfortably with eyes open [41].
The subjects received an explanation of the purpose and procedures
of the study, which they fully understood, and gave written informed
consent to participate. Subjects were asked to relax in a peaceful
meditative state. For each subject, approximately one minute of EEG
measurement of relaxed eyes open condition before (SubX_pre) and
after meditation (SubX_post) was available. Moreover, Subject 1 fol-
lowed three measurements of the eyes open meditation (Sub1_med1,
Sub1_med2, Sub1_med3), and Subjects 2 and 3 had one measurement
(Sub2_med, Sub3_med). The time duration of each EEG measurement
is described in Table 1.

The EEG signal was measured by a 64-channel BioSemi EEG record-
ing system (Biosemi B.V.) with a 512 Hz sampling rate [21,41]. In
addition, horizontal and vertical EOG were recorded. In this study, 19
EEG electrodes - Fp1, F3, F7, C3, T7, P3, P7, O1, Pz, Fp2, Fz, F4,
F8, Cz, C4, T8, P4, P8 and O2, were used. In the preprocessing step,
the EEG data were downsampled to 128 Hz, re-referenced to linked
ears and filtered by using a high-pass 8th order Butterworth filter with
a cut-off frequency of 0.5 Hz in the BrainVision Analyser 2 (BVA2)
software [42]. Then, a low-pass filter with a cut-off frequency of 30 Hz
was applied using the MATLAB routine filtfilt. An example of the EEG
signal from eight left-hemisphere electrodes is depicted in Fig. 4. Fig. 5
shows the whole VEOG signal of Sub1_med2, two short time intervals
of EOG with one blink, and the corresponding amplitude spectra.

In BVA2, both the VEOG and HEOG channels were selected as input
parameters for GCD, and the eye blink detection and corrections were
run automatically.

Regarding ICA, the VEOG channel was used as the blink marker
channel and scanned for blinks by the mean slope algorithm in the first
step. Afterward, the FastICA algorithm was applied to the entire EEG
recording. The number of ICA steps and convergence bounds were set
to 150 and 10−7, respectively. A proportion of variance shared between
the VEOG channel and ICA components was then used to identify the
ICA components related to VEOG activity. In this step, BVA2 focuses
only on time intervals with blink markers [43]. If the proportion of
variance was above 30%, the component was labeled as ocular and
removed from the data together with other ocular components in the

next step.

6 
3.2. Dataset 2

The OSF EEG eye artifact dataset is a public dataset of eye blink cor-
rupted EEG data, available at https://osf.io/2qgrd/. The whole dataset
consists of EEG data from five studies. We focused on data from
study01, study02, study03, and study04 consisting of EEG measure-
ments from 5, 14 (one subject from study02 was removed due to an
insufficient number of eye blinks), 10, and 15 subjects, respectively.
The original data description can be found in [44–48].

Together, 83 signals are available for each subject, including EEG
and EOG (HEOG and VEOG) signals, EOG derivatives, artifact and other
channels. To be consistent with Dataset 1, we used only the EEG signal
from 19 electrodes - Fp1, F3, F7, C3, T7, P3, P7, O1, Pz, Fp2, Fz, F4,
F8, Cz, C4, T8, P4, P8, and O2. However, EEG data from studies 01,
02, and 03 did not include EEG signals from electrodes Fp1 and Fp2.
In these cases, we used the signal from AF3 and AF4 electrodes.

The EEG measurement for each subject was divided into two blocks.
In this study, the signal from the first block was used.

The EEG signal was measured under four conditions - rest, horizon-
tal eye movements, vertical eye movements, and eye blinks - which
we call epochs in the following text. The number of epochs measured
under different conditions, their repetition, and order within the first
block varies across subjects. After downsampling to 100 Hz (study04)
or 200 Hz (study01) and data preprocessing, each epoch took 8 s of EEG
signal (800 points for sampling frequency 100 Hz and 1600 points for
sampling frequency 200 Hz). Finally, the preprocessed EEG data were
organized in a three-way array of the size number of signals × number
of samples × number of epochs.

However, SPECTER cannot be run on a single epoch consisting only
of eye blinks or other artefacts, because a sufficient number of intervals
with both artifactual and clean EEG signals is needed. Therefore, we
concatenated the EEG signal for each subject among epochs. To avoid
signal discrepancies caused by concatenation, we applied moving ave-
rage smoothing around the block borders (±5 time points). An example
of the EEG signal from study04 is depicted in Fig. 6.

The dataset also included precomputed ICA components for each
subject. The ADJUST algorithm selected the ICA eye blink components
to be consistent with SPECTER. For component removal, we used the
pop_subcomp routine in EEGLAB [36].

3.3. Method comparison

Both datasets mentioned above were selected to evaluate the
SPECTER algorithm’s performance in comparison to ICA and GCD.

Dataset 2 serves especially for a quantitative comparison between (i)
manual selection of eye blink components and automatic component
selection criteria for SPECTER and (ii) SPECTER and ICA eye blink
removal algorithms. The GCD algorithm was not considered within the
quantitative analysis since it directly uses information from the EOG
channel, which would make the comparison unfair.

In the first step, we focused on the resting state epochs, over which

the cleaned EEG signal is assumed to remain unchanged compared to

https://osf.io/2qgrd/
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Fig. 4. Sub1_med2: An example of the EEG signal from eight left-hemisphere electrodes measured during the eyes open meditation.
Fig. 5. Sub1_med2: An example of the amplitude spectrum (right column) of the whole VEOG signal (top, left) and two short time intervals of VEOG with one eye blink (middle
nd bottom, left).
ts original version. As mentioned in Section 3.2, each eight-second
poch of EEG signal was labeled as rest, horizontal eye movement,
ertical eye movement, or eye blinks in each subject. However, after
isual inspection, we detected epochs, labeled initially as rest, including
ye blinks. Therefore, for each subject, only epochs with the abso-
ute EEG amplitude below 50 μV were considered in further analysis.

our subjects (one from study03 and three from study04) included no

7 
eye blink-free rest epochs. Consequently, the total number of subjects
considered in this comparison was 40.

To compare ICA and SPECTER outcomes over the resting state
epochs, we considered Spearman’s correlation coefficient and the ab-
solute difference between power spectral densities (PSD) between the
original EEG signal and its versions cleaned by ICA and SPECTER. Ad-

ditionally, we considered the Euclidean distance between the original
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Fig. 6. Study04: An example of the concatenated EEG signal from eight left-hemisphere electrodes of one subject.
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EG signal and its version cleaned by ICA and SPECTER. However,
s the conclusions mimic those based on Spearman’s correlation, this
easure was omitted in this study.

To avoid low correlations due to opposite sign and slight time shift
roblem, we applied the heuristics described in Section 2.1 and the dtw
lgorithm to the original EEG signal and the SPECTER’s corrected EEG
n each rest epoch and each electrode separately.

Similarly to [49,50], PSD’s for the original EEG signal and its
ersion cleaned by ICA and SPECTER were computed by the Welch’s
ethod with the two-second time windows and 1.5 s overlap in four

requency bands - delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz) and
eta (12–25 Hz). EEG signals from frontal Fp1 and Fp2 electrodes (or
F3 and AF4 electrodes, if signals from Fp1 and Fp2 were unavailable)
ere used.

Since the true eye blink free EEG signal is unknown for Dataset 2,
e took the ICA eye blink corrected EEG signal as a benchmark and

omputed its Spearman’s correlation with the SPECTER’s results over
he eye blink epochs. However, if the correlations were too low, we
isually inspected both ICA and SPECTER corrected EEG signal, to eval-
ate whether the low correlation was caused by inferior performance
f SPECTER or ICA.

In Dataset 1, we focused more on the reconstructed EEG signal
isual quality and performed only a qualitative comparison between
PECTER, ICA, and GCD. We focused primarily on observations in
hich GCD or ICA led to inferior results to demonstrate SPECTER’s
bility to remove eye blinks successfully in these situations. Unless
therwise stated, we focus on the results from frontal electrodes, where
he effect of eye blinks is most pronounced. The reconstructed signal
rom other electrodes is discussed only in the case of unexpected
ehavior.

Finally, we also inspected the frequency spectrum to detect the
otential presence of artificial frequency components added to EEG by
he eye blink removal methods in both datasets.

. Results

Section Results is divided into four parts. First part compares the
isual selection of eye blink-related latent components with three au-
omatic component selection criteria. Selected results of PARAFAC and
ripleC in Dataset 1 are presented, and eye blink properties of estimated
eneral time scores are discussed.
 o

8 
The second part quantitatively compares the quality of SPECTER’s
utcomes on rest and eye blink epochs in Dataset 2 with the ICA
pproach.

Qualitative comparison of SPECTER with the GCD algorithm [2] and
CA - both carried out by the BVA2 software [42] - is described in the
hird part.

The fourth part analyses a situation when the SPECTER algorithm
ay provide inferior results.

.1. Eye blink component selection

.1.1. Dataset 1
An example of PARAFAC components for Subject 1 during the

econd meditation session (Sub1_med2) is depicted in Fig. 7. In this
ase, tripleC found five general components.

A visual inspection of all PARAFAC components detected three eye
link-related components. In Fig. 7, components 1, 3, and 4 follow
scillatory brain activity located in the frontal brain regions. The fre-
uency signature of selected components follows higher weights either
ver low frequencies (≤4 Hz, component 3) or is distributed over a
onger frequency interval (components 1 and 4). Both characteristics
re typical for eye blinks. The corresponding time scores follow a
lear spiky pattern. Moreover, short subintervals with higher TS values
isually overlap with the subintervals with higher amplitude of EEG
epresenting eye blinks at the Fp1 electrode (Fig. 7, second row).

In the second step, we applied the automatic thresholding method
escribed in [40] to the Fp1 EEG signal with the aim to detect the
ime location of eye blinks. The results of the detection were manually
nspected. Fig. 8 compares the general PARAFAC TS from Fig. 7 with
he detected eye blink intervals. TS 1, TS 3, and TS 4 achieve higher
alues only over eye blink subintervals and likely indicate the eye blink
resence. On the other hand, TS 2 and TS 5 achieve higher values over
he whole time interval and represent other brain activity than eye
links.

The ADJUST algorithm labeled components 1, 3, and 4 as artifactual
nd eye blink-related. This selection is in line with the visual inspection.
he correlation between component TS and the EEG signal from the
p1 or Fp2 electrode overcame the threshold of 0.4 only for component
. The third selection criterion, based on the kurtosis of TS, selected
nly component 1 as artifactual.
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Fig. 7. Sub1_med2: PARAFAC components (columns) detected by the cluster analysis of the PARAFAC model with one to ten components - the tripleC algorithm. The frequency
signatures (FS) are depicted in the first row together with the component weight (the corresponding diagonal elements of the core tensor 𝐺𝑐 (3)) in the title. The time scores (TS,
orange) are compared with the original EEG signal from the Fp1 electrode (black) in the second row. Spatial signatures (SS) are plotted as topographic maps with the same color
scale in the third row. Three components representing eye blinks selected for removal within the SPECTER algorithm are highlighted by red rectangles.
Fig. 8. Sub1_med2: Comparison of general time scores (TS, orange) from Fig. 7 and time intervals with detected eye blinks (black) at the Fp1 electrode by an automatic thresholding
method [40].
Results for Subject 3 are depicted in Figs. 9 and 10. Higher ampli-
tudes in time scores of the eye blink PARAFAC components 1 and 2
for Sub3_post data (Fig. 9) occur on the time intervals with eye blinks
detected by the automatic thresholding method of the Fp1 electrode
EEG signal (Fig. 10).

Components 1 and 2 were also selected using the ADJUST algo-
rithm. The correlation with frontal electrodes exceeded the threshold
of 0.4 only for component 1. The selection criterion based on kurtosis
did not detect any artifactual component.

4.1.2. Dataset 2
In this subsection, we focus on a more comprehensive comparison

of the eye blink component selection provided by (i) visual inspection,
(ii) ADJUST algorithm, (iii) criterion based on correlation between
9 
component TS and EEG signal from frontal electrodes, and (iv) criterion
based on TS kurtosis as described in Section 2. All four criteria selected
one to five eye blink-related components.

For each subject, we computed the overlap between components
selected by visual inspection and the other three criteria mentioned
above. The following formula computed the overlap

𝑂 =
number of components selected by both methods

number of components selected by any of the two methods
∗ 100 [%].

For example, visual inspection selected components 3 and 4, and
another method only selected component 4. Then, the overlap was
1
2 ∗ 100 = 50%. Suppose another method selected components 1 and
4. In that case, the number of components selected by both methods is
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Fig. 9. Sub3_post: See Fig. 7 description.
Fig. 10. Sub3_post: See Fig. 8 description.
one (component 4), and the number of unique components selected by
any of the two methods is three (components 1, 3, 4). Consequently,
the overlap is 33%.

The overlaps were divided into four categories - 𝑂 = 100% (exact
overlap), 𝑂 ∈ [50, 99]%, 𝑂 ∈ [25, 49]%, and 𝑂 < 25%. For each study,
we computed the ratio of subjects with overlaps falling into each of the
four categories. The results are depicted in Fig. 11.

In study01, visual inspection and ADJUST selected the same com-
ponents in four out of five subjects (Fig. 11). The only exception was
subject 03 for which the visual inspection selected components number
1 and 7 as eye blink-related (Table 2). ADJUST also selected component
1, but instead of component 7, component 2 was labeled as blink-
related. Therefore, the overlap between visual inspection and ADJUST
was only 33% for this subject.

Exact overlap between visual inspection and ADJUST was achieved
only in one out of 14 subjects in study02. In nine of 14 subjects,
the visual inspection selected two or three components. However, in
10 
ADJUST, usually, one of them did not meet predefined criteria and was
not labeled as eye blink-related. Consequently, the overlap decreased to
50% (visual inspection - two components, ADJUST - one component) or
67% (visual inspection - three components, ADJUST - two components).
The same was true for study03 and study04 - subjects falling into the
category ‘‘overlap between 50% and 99%’’ usually differed in only one
component, labeled as eye blink-related by visual inspection and not
by ADJUST or vice versa.

Nevertheless, the ratio of subjects with an overlap between visual
inspection and ADJUST above 50%, was above 0.6. What is more
important, the visual inspection and ADJUST selected different compo-
nents in only five out of 44 subjects in all four studies. In two of these
five cases, ADJUST was not able to select any eye blink component,
and therefore, its overlap with visual inspection was 0%.

When considering the overlap between visual inspection and the
criterion based on correlation, the overlap was under 50% only in
one of 44 subjects (subject from study04). Similarly to the ADJUST
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Fig. 11. The bar plot depicts the ratio of subjects (within each study) in which the overlap between visually selected eye blink components and the selection based on (i) ADJUST,
ii) correlation with EEG from frontal electrodes (Corr), and (iii) kurtosis of time scores (Kurt) was either 100% (exact overlap), between 50% and 99%, between 25% and 49%,
r under 25%.
able 2
or subjects in study 01, the eye blink related components were selected by (i) visual
nspection of component time scores, spatial and frequency signatures, (ii) ADJUST
lgorithm, (iii) criterion based on correlation between component time scores and EEG
ignal from frontal electrodes above 0.4, and (iv) criterion based on time scores kurtosis
bove a given threshold. The ‘‘–’’ sign indicates, that any component was selected by
he considered criterion.
Study 01 Number of gen. Labels of selected components

Subject components Visual insp. ADJUST Correlation Kurtosis

1 3 1, 2 1, 2 1 –
2 4 1 1 1, 2 1
3 9 1, 2 1, 7 1, 2, 8 1, 7
4 6 1, 4 1, 4 1, 4 4
5 8 1, 2, 5, 7 1, 2, 5, 7 1, 5 5, 7

algorithm, selection based on visual inspection and correlation usually
differed in only one or two of the selected components.

The most inconsistent results with visual selection were obtained
for the criterion based on kurtosis. There are only four subjects with
an exact match (Fig. 11), but also 17 subjects with overlap under 25%.
Two reasons for these inconsistencies are: (i) the threshold proposed
in [37] was too high in several cases and any kurtosis value overcame
it (subject 01 from study01 in Table 2), or (ii) high kurtosis values were
observed not only in TS of clearly eye blink-related components but also
in components with TS following a peaky distribution, not representing
eye blinks but some other type of artefacts. From this point of view,
using a single criterion based on kurtosis for component selection may
lead to inferior results, and we recommend combining its results with
at least one other criterion.

Finally, we can conclude that visual inspection led to consistent
results with both the automatic component selection criterion based on
correlation and the ADJUST algorithm, which are widely used also for
ICA eye blink component selection.

4.2. Comparison of ICA and SPECTER by using Dataset 2

4.2.1. Resting state epochs
As described in Section 3.3, we aimed to compute the Spearman’s

correlation coefficient between the original EEG signal and its versions
corrected by SPECTER and ICA on resting state epochs. The median

correlations for each subject and each electrode are depicted in Fig. 12.

11 
For the SPECTER algorithm we considered the eye blink-free EEG signal
without correction for the slight time shift and opposite sign problem
(Fig. 12, black dotted line) and its version after applying a heuristics
described in Section 2.1 and the DTW algorithm (Fig. 12, black line).

Lower correlations between the EEG signal reconstructed by
SPECTER and the original EEG during the resting state epochs were
expected due to the slight time shift and opposite sign problem (Fig. 12,
dotted line). After applying DTW and sign correction heuristics, the
Spearman’s correlations increased, and their median values were com-
parable with the correlations produced by ICA (Fig. 12, red line) for
the majority of subjects and electrodes.

For subjects 6, 7, 8, and 9 in study02, ICA visually led to higher
correlations for all electrodes than SPECTER with DTW. However,
we would like to highlight that the achieved correlations between
SPECTER with DTW and the original EEG signal were still high, at
least 0.86, in these cases. Minor differences between SPECTER and
ICA correlation values (at most 0.1) may be caused by the remaining
opposite signs and slight time shift problems in SPECTER’s EEG signal.
As highlighted in Section 2.1, the proposed heuristics and DTW are
promising but do not provide a 100% solution to both problems.

On the other hand, there are several subjects (Fig. 12, subjects 5,
8 in study04) for which ICA led to inferior frontal electrode results
compared to SPECTER. In contrast to the situations described in the
previous paragraph, in which SPECTER produced correlations above
0.86, in this case, ICA resulted in much lower correlations with the orig-
inal EEG signal. We hypothesize that low correlations were caused by
not negligible changes introduced by ICA during resting state epochs.
An example for subjects 5 and 8 from study04 is depicted in Fig. 13.
In this extreme case for subject 8, the correlation between the ICA
corrected and original EEG signal was only 0.14 for electrode Fp1/AF3
and 0.16 for electrode F8.

The second measure considered was the absolute difference between
the original EEG PSD and PSD of the signal corrected by SPECTER or
ICA in four frequency bands. Using the nonparametric paired Wilcoxon
test, we detected no significant difference between ICA and SPECTER in
any frequency band (p-values were above 0.78 > 0.05). This conclusion
was true when merging the resting state epochs without eye blinks from
one subject together and also when considering each epoch separately.

From this point of view, SPECTER and ICA led to equivalent results.
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Fig. 12. Dataset 2: The median Spearman’s correlation coefficient between the original EEG signal and EEG signal reconstructed by SPECTER and ICA (red line) over rest epochs.
In the case of SPECTER, the correlations were computed using only the SPECTER algorithm (black dotted line) or SPECTER followed by heuristics described in Section 2.1 and
the DTW algorithm for solving the slight time shift and opposite sign problem (black line). Only labels for each second electrode are depicted on the x-axes.
4.2.2. Eye blink epochs
In the second step, we focused on eye blink epochs.3 Since the

true eye blink-free EEG signal is unknown over these epochs, we took
the ICA results as a benchmark and computed Spearman’s correlation
coefficient between the eye blink-free EEG signal reconstructed by ICA
and SPECTER over eye blink intervals. In the case of SPECTER, the
reconstructed signal was also corrected for the opposite sign and slight
time shift problem. The median correlations for each subject and each
electrode are depicted in Figs. 14 and 15.

In most cases, SPECTER and ICA produced very similar results
on parietal and occipital electrodes, mirrored in correlations above
0.8. Lower correlations, but still above 0.4, were observed on frontal
electrodes. However, this was somewhat expected because frontal elec-
trodes are affected mainly by eye blinks, and both ICA and SPECTER
corrected them slightly differently. An example of one eye blink epoch
for subject 5 from study04 is depicted in Fig. 16. Since the ground truth
is unknown, we cannot decide which method removes the eye blinks
‘‘better’’.

Despite the lack of a clear winner in terms of eye blink removal,
we can confidently conclude that SPECTER did not remove eye blinks
in a significantly different way than ICA. This finding is significant, as

3 Only epochs originally labeled as eye blink were considered. The resting
state epochs with eye blinks were not taken into account.
12 
it reinforces the main conclusion of our study. No negative or close to
zero correlations were observed, further supporting this conclusion.

4.3. Comparison of Gratton-Coles & Donchin, ICA, and SPECTER by using
Dataset 1

In the first step, we visually compared reconstructed signals using
the GCD algorithm, ICA, and SPECTER. We can conclude that all three
algorithms provided satisfactory results in most observations. In the
following analysis, we would like to focus on selected results where
differences between the methods were observed

An example of the EEG signal from the Fp1 electrode for Sub1_med2
is depicted in Fig. 17. The SPECTER algorithm removed eye blinks
and provided visually satisfactory results similar to ICA (Fig. 17, left
column). Both methods present a decrement in the spectrum of the
reconstructed EEG signal compared to the original signal for low fre-
quencies (Fig. 17, right column). However, the GCD algorithm faced
difficulties because it could not wholly remove several eye blinks
(Fig. 17, left column). The GCD reconstructed signal spectrum overes-
timates the spectrum of the original EEG signal for higher frequencies
(Fig. 17, right column).

In the second step, we focused on a short time interval, including no
visible eye blinks (Fig. 18). In this case, the original and reconstructed
signals are assumed to overlap up to minor numerical differences. ICA
provided the most similar reconstructed signal to the original one, and
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Fig. 13. Dataset 2: An example of the resting state EEG epoch from the Fp1 electrode
of subjects 5 and 8 from study04 (gray) and its versions reconstructed by SPECTER
with DTW (black) and ICA (red).

the corresponding spectra overlap. SPECTER also worked well. The
difference between the original and GCD reconstructed signal spectrum
was more extensive. We can conclude that GCD significantly changed
the signal by adding an artificial component leading to spectrum over-
estimation. This result was confirmed by visual inspection of the GCD
reconstructed signal (Fig. 18).

An opposite result was obtained for Sub3_post. In this case,
SPECTER and GCD provided satisfactory results in both the time
domain (Fig. 19, second and fourth row) and spectrum (Fig. 20). On
the other hand, ICA was not able to remove the artifact at the very
beginning of the observation and also in the second half of the time
interval (Fig. 19, third row, left column). Moreover, the ICA-corrected
EEG signal reaches higher amplitudes over both blink and non-blink
time intervals leading to spectrum overestimation (Figs. 20 and 21,
third row).

To quantify the observed differences by an objective measure, we
computed the ratio between the spectrum of the reconstructed signal
X𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 and the original signal spectrum X𝑜𝑟𝑖𝑔 . The original and
reconstructed EEG signals were divided into 2-second time windows
with 1.9 s of overlap (95%), and FFT computed the signal spectrum
between 0 Hz and 30 Hz for each time window. Finally, the ratio was
computed using the following formula

𝑅𝑒𝑙,𝑓
𝑠𝑝𝑒𝑐 =

X𝑒𝑙,𝑓
𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑

X𝑒𝑙,𝑓
𝑜𝑟𝑖𝑔

(4)

or each electrode 𝑒𝑙 and each frequency 𝑓 separately. If 𝑅𝑒𝑙,𝑓
𝑠𝑝𝑒𝑐 ≫

, the spectrum of the reconstructed signal lies above the original
ignal spectrum - we speak about spectrum overestimation for a given
lectrode and a given frequency 𝑓 .

The results for frontal EEG electrodes Fp1, Fp2, and Fz and nine EEG
ecordings where the spectrum overestimation occurred (𝑅𝑠𝑝𝑒𝑐 > 1) are
epicted in Fig. 22. We can see that both ICA and GCD overestimated
he original signal spectrum in higher frequencies. Further analysis
howed that the problem with spectra overestimation is present in data
ith a higher alpha rhythm amplitude (≈10 Hz–13 Hz). Still, more

xperiments and analysis are needed to confirm this observation. On
he other hand, the ratio of the spectrum of the signal reconstructed
y the SPECTER algorithm and the original signal spectrum is always
nder the threshold one.
13 
.3.1. A special situation when SPECTER is not appropriate
Both ICA and SPECTER algorithms are based on data variability

nalysis. Consequently, they can detect eye blink components only if
here are satisfactory blink-free time intervals. However, this is not
he case with the Sub1_post measurement, where the total duration
f eye blinks overcomes the duration of non-blink intervals. As de-
icted in Fig. 23, ICA could not remove eye blinks. SPECTER produced
etter results than ICA, but the eye blinks are not entirely removed
n the reconstructed signal. We hypothesize that due to the eye blink
resence in most observations, both methods considered blinks (or
part of them) as a baseline. Consequently, they were not able to

ntirely remove them. For Sub1_post, only the GCD algorithm yielded
atisfactory results because it is based on regression analysis instead of
ata variability (Fig. 23, top).

To confirm our hypothesis, we merged the original Sub1_post data
ith the signal reconstructed by the GCD algorithm and applied the
PECTER algorithm again. In this case, the new data included ‘‘enough’’
link-free time intervals, and SPECTER successfully removed eye blinks
resent in the first half of the observation while remaining the second
alf unchanged (Fig. 24).

. Conclusions

The present study deals with the problem of removing eye blinks
rom EEG signals. Traditional approaches like GCD [2] or ICA [8]
erform well in a wide range of situations and under a variety of
onditions. It is important to note, however, that both methods also
ossess certain disadvantages - an overestimation of the spectrum of
he cleaned signal in ICA or removing valuable information from EOG
y the GCD when EEG corrupts the EOG signal [4]. Therefore, when
hese traditional methods fail, finding an alternative approach to eye
link removal is practical.

In this study, we proposed the SPECTER algorithm combining tensor
ecomposition, namely the PARAFAC model, with the signal recon-
truction from the amplitude spectrum [25]. The latent components
btained by the PARAFAC algorithm follow a natural physiological
nterpretation and are easily inspected for eye blink properties, either
isually or mathematically. The component selection based on visual
nspection provided similar results as two fully automated selection cri-
eria proposed for ICA: (i) the ADJUST algorithm and (ii) the criterion
ased on the correlation between component time scores and the EEG
ignal from frontal electrodes.

Furthermore, the possible application of different constraints to the
ARAFAC solution and the general nature of the overall algorithm
llows the removal of a wide range of EEG artifacts or oscillatory
hythms, indicating that SPECTER is not limited only to eye blink EEG
orrection.

SPECTER was observed to provide a comparable ability to remove
ye blinks with ICA and GCD algorithms when applied to EEG data from
wo datasets. But what is more critical, SPECTER provided superior
erformance in specific real-data situations, where ICA led to signal
pectrum overestimation or GCD could not properly remove eye blinks.

A quantitative analysis based on correlations between the original
EG signal and EEG signal reconstructed by SPECTER across resting
tate and eye blink epochs from Dataset 2 led us to the conclusion
hat SPECTER did not change the EEG signal over resting-state epochs
nd produced comparable results with ICA. When comparing GCD’s and
PECTER’s performance on Dataset 1, we preferred a visual inspection
ver a quantitative analysis due to an unknown true eye blink-free EEG
ignal. Moreover, any quantitative comparison would be unfair since
he EOG channel is essential in the GCD algorithm, but SPECTER does
ot need any EOG information. Moreover, SPECTER is also applicable
hen the EOG channel is unavailable.

The core idea of SPECTER is similar to the CWT-Tuc-OC algo-
ithm [24], which is based on a combination of the wavelet transform
ith the Tucker model. However, the latent components extracted
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Fig. 14. Dataset 2: The median Spearman’s correlation coefficient between EEG signal reconstructed by SPECTER and ICA over eye blink epochs. In the case of SPECTER, the
orrelations were computed by using only SPECTER algorithm (black dotted line) or SPECTER followed by heuristics described in Section 2.1 and DTW algorithm for solving the
light time shift and opposite sign problem (black line). Only labels for each second electrode are depicted on the x-axes.
rom the wavelet coefficient tensor do not follow a natural interpre-
ation in the spatial and pseudo-frequency domain. Only the time
cores can be used for the eye blink-related components selection.
espite our effort to properly tune CWT-Tuc-OC parameters and dif-

erent approaches to select and remove eye blink-related components,
WT-Tuc-OC produced inferior results to SPECTER.

Nevertheless, SPECTER was also observed to have some shortcom-
ngs, allowing space for future improvement. Since the tensor decom-
osition is based on data variability analysis, SPECTER is inappropriate
or EEG signals with insufficient eye blink-free time intervals.

The second disadvantage of SPECTER is the presence of slight time
hifts and opposite signs in the reconstructed signal values due to
14 
the need for more information about the signal phase spectrum. In
this study, we proposed simple heuristics to solve the opposite sign
problem. The slight time shifts may diminish after applying a time-
warping method. Nevertheless, these two problems are present only
when analyzing the resulting eye blink-free signal in the time domain.
In practice, the EEG analysis usually focuses on the signal spectrum and
properties in the time-frequency or time-space-frequency domain rather
than the raw signal. Consequently, it is possible to omit the fourth step
in SPECTER’s algorithm since 𝑋𝑟𝑒𝑚 from Section 2 already represents
the spectrum of eye blink-free signal.

To conclude, this study aims not to compete with ICA, GCD, or
other eye blink removal approaches, whose good performance has been
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Fig. 15. Dataset 2: Heatmaps depicting the median Spearman’s correlation coefficient between EEG signal reconstructed by ICA and SPECTER followed by heuristics described in
Section 2.1 and DTW algorithm for solving the slight time shift and opposite sign problem over eye blink epochs.
Fig. 16. Dataset 2: An example of the eye blink EEG epoch from the Fp1 electrode of subject 5 from study04 (gray) and its versions reconstructed by SPECTER with DTW (black)
and ICA (red).
proven in the literature. We propose the SPECTER algorithm as an alter-
native method where traditional algorithms may fail or identification
of the latent eye blink tensor components is preferred while inspecting
EEG data. Despite the pilot nature of the presented results and room
for further algorithm improvement, SPECTER offers a promising way
to solve the eye blink removal problem.
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Fig. 17. Sub1_med2: The original Fp1 electrode EEG signal and EEG signals reconstructed by the Gratton-Coles & Donchin, ICA, and SPECTER algorithms (left column). The right
olumn depicts the corresponding normalized amplitude spectrum. For a better comparison, subfigures with reconstructed signal (black) also include the original EEG signal or its
pectrum (gray).
I

ppendix A. Removing components in PARAFAC and Tucker
odel

Let us assume the estimated component matrices 𝐴(1),… , 𝐴(𝑁), and
the super-diagonal core tensor 𝐺 either in PARAFAC (2) or in the

ucker model (1). In the following text, three approaches for the eye
link removal from the data tensor 𝑋 are described.

i) signature zeroing. In the first approach, the component signatures fol-
owing eye blink characteristics are set to a zero vector of appropriate
ength. Let us denote the modified component matrices as

(𝑛)⋆ =
(

𝐚(𝑛)⋆1 𝐚(𝑛)⋆2 … 𝐚(𝑛)⋆𝐹

)

;

(𝑛)⋆
𝑓 =

{

𝐚(𝑛)𝑓 , 𝑓 ∉ 𝑆(𝑛)
𝑟𝑒𝑚,

𝟎, 𝑓 ∈ 𝑆(𝑛)
𝑟𝑒𝑚,

𝑓 = 1,… , 𝐹 ,

here 𝑆(𝑛)
𝑟𝑒𝑚 is an index set of signatures selected for zeroing in the 𝑛th

ode.
The formula for the ‘‘cleaned’’ tensor 𝑋𝑟𝑒𝑚 by using the Tucker

model follows

𝑋𝑟𝑒𝑚 =
𝐾1
∑

𝐾2
∑

⋯
𝐾𝑁
∑

𝑔𝑘1𝑘2…𝑘𝑁 𝐚(1)⋆𝑘1
◦𝐚(2)⋆𝑘2

◦… ◦𝐚(𝑁)⋆
𝑘𝑁
𝑘1=1 𝑘2=1 𝑘𝑁=1

16 
=
∑

𝑘1∉𝑆
(1)
𝑟𝑒𝑚

∑

𝑘2∉𝑆
(2)
𝑟𝑒𝑚

⋯
∑

𝑘𝑁∉𝑆(𝑁)
𝑟𝑒𝑚

𝑔𝑘1𝑘2…𝑘𝑁 𝐚(1)𝑘1
◦𝐚(2)𝑘2

◦… ◦𝐚(𝑁)
𝑘𝑁

. (A.1)

Due to the diagonal structure of the core tensor 𝐺 in the PARAFAC
model (2), zeroing an 𝑓 th signature in the 𝑛th mode leads to its zeroing
in other modes as well. Let us denote 𝑆𝑟𝑒𝑚 = ∪𝑁

𝑛=1𝑆
(𝑛)
𝑟𝑒𝑚. Consequently,

Eq. (A.1) simplifies to

𝑋𝑟𝑒𝑚 =
𝐹
∑

𝑓=1
𝑔𝑓…𝑓 𝐚

(1)⋆
𝑓 ◦… ◦𝐚(𝑁)⋆

𝑓 =
∑

𝑓∉𝑆𝑟𝑒𝑚

𝑔𝑓…𝑓 𝐚
(1)
𝑓 ◦… ◦𝐚(𝑁)

𝑓 . (A.2)

n other words, 𝑋𝑟𝑒𝑚 is reconstructed using only the non-artifactual
components.

This approach for the Tucker model was used in the CWT-Tuc-
OC algorithm [24]. However, signature zeroing does not consider the
possible error of PARAFAC or the Tucker model itself, see Eqs. (2)
and (1). If the model is inappropriate and the error still includes
significant useful information and data variation, this information will
also be missing in 𝑋𝑟𝑒𝑚. The problem will be demonstrated in detail in
Appendix A.1.

(ii) component subtraction. Component subtraction for PARAFAC is de-
scribed in Section 1.3, so let us consider the Tucker model.
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Fig. 18. Sub1_med2: A selected interval of the original Fp1 electrode EEG signal (top left) and EEG signals reconstructed by Gratton-Coles & Donchin, ICA, and SPECTER algorithms
left column). The right column depicts the corresponding normalized amplitude spectra of the original EEG signal (gray) and of the eye blink corrected signal (black). The interval
as selected so the original EEG signal includes no eye blinks.
T

Subtraction in one, for example the 𝑚th mode, is straightforward

𝑟𝑒𝑚 = 𝑋 −
𝐾1
∑

𝑘1=1
⋯

∑

𝑘𝑚∈𝑆
(𝑚)
𝑟𝑒𝑚

⋯
𝐾𝑁
∑

𝑘𝑁=1
𝑔𝑘1…𝑘𝑚…𝑘𝑁 𝐚(1)𝑘1

◦… ◦𝐚(𝑚)𝑘𝑚
◦… ◦𝐚(𝑁)

𝑘𝑁
.

Subtraction in several modes is more complex. For simplicity, let
us assume only the first and second modes. In the first case, only
components with the first mode signature belonging to 𝑆(1)

𝑟𝑒𝑚 and the
second mode signature belonging to 𝑆(2)

𝑟𝑒𝑚 are removed

𝑋𝑟𝑒𝑚1
= 𝑋 −

∑

𝑘1∈𝑆
(1)
𝑟𝑒𝑚

∑

𝑘2∈𝑆
(2)
𝑟𝑒𝑚

𝐾3
∑

𝑘3=1
⋯

𝐾𝑁
∑

𝑘𝑁=1
𝑔𝑘1𝑘2𝑘3…𝑘𝑁 𝐚(1)𝑘1

◦𝐚(2)𝑘2
◦𝐚(3)𝑘3

◦… ◦𝐚(𝑁)
𝑘𝑁

.

On the other hand, it is also possible to remove all components with
either the first mode signature from 𝑆(1)

𝑟𝑒𝑚 or the second mode signature
from 𝑆(2)

𝑟𝑒𝑚

𝑋𝑟𝑒𝑚2
= 𝑋 −

∑

(1)

∑

(2)

𝐾3
∑

⋯
𝐾𝑁
∑

𝑔𝑘1𝑘2𝑘3…𝑘𝑁 𝐚(1)𝑘1
◦𝐚(2)𝑘2

◦𝐚(3)𝑘3
◦… ◦𝐚(𝑁)

𝑘𝑁
−

𝑘1∉𝑆𝑟𝑒𝑚 𝑘2∈𝑆𝑟𝑒𝑚
𝑘3=1 𝑘𝑁=1

17 
−
∑

𝑘1∈𝑆
(1)
𝑟𝑒𝑚

∑

𝑘2∉𝑆
(2)
𝑟𝑒𝑚

𝐾3
∑

𝑘3=1
⋯

𝐾𝑁
∑

𝑘𝑁=1
𝑔𝑘1𝑘2𝑘3…𝑘𝑁 𝐚(1)𝑘1

◦𝐚(2)𝑘2
◦𝐚(3)𝑘3

◦… ◦𝐚(𝑁)
𝑘𝑁

−

−
∑

𝑘1∈𝑆
(1)
𝑟𝑒𝑚

∑

𝑘2∈𝑆
(2)
𝑟𝑒𝑚

𝐾3
∑

𝑘3=1
⋯

𝐾𝑁
∑

𝑘𝑁=1
𝑔𝑘1𝑘2𝑘3…𝑘𝑁 𝐚(1)𝑘1

◦𝐚(2)𝑘2
◦𝐚(3)𝑘3

◦… ◦𝐚(𝑁)
𝑘𝑁

.

he choice of 𝑋𝑟𝑒𝑚1
or 𝑋𝑟𝑒𝑚2

depends on the user preferences and

overall interpretability. Considering more than two modes leads to
similar, only more complicated formulas.

(iii) projection to nullspace to the space spanned by selected signatures. The
third approach for signature removal differs from the previous two and
was inspired by [22].

The PARAFAC model solution is unique up to a component or-
der [32]. The same is true for the Tucker model. Therefore, let us
permute the component matrix columns and corresponding fibers in
𝐺 so as the first 𝑀𝑛 < 𝐾𝑛 signatures in the 𝑛th, 𝑛 = 1,… , 𝑁 mode
are those we would like to remove and let us divide the component
matrices into two blocks

(𝑛) ( (𝑛) (𝑛))
𝐴 = 𝐵 , 𝐶 , 𝑛 = 1,… , 𝑁,
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Fig. 19. Sub3_post: The original Fp1 electrode EEG signal and EEG signals reconstructed by the Gratton-Coles & Donchin, ICA, and SPECTER algorithms (left column). The right
olumn shows a detailed view of a short time interval including eye blinks (red rectangle in the left column). For a better comparison, subfigures with reconstructed signal (black)
lso include the original EEG signal (gray).
A

𝑋

(𝑛) ∈ R𝐽𝑛×𝑀𝑛 , 𝐵(𝑛) =
(

𝐚(𝑛)1 , 𝐚(𝑛)2 ,… , 𝐚(𝑛)𝑀𝑛

)

,

Then

𝑋𝑟𝑒𝑚 = 𝑋 ×𝑛1 𝑃𝑛1 ×𝑛2 𝑃𝑛2 …×𝑛𝑉 𝑃𝑛𝑉 ,

where 𝑛1, 𝑛2,… , 𝑛𝑉 are modes in which the signature projection is
erformed, 𝑃𝑛𝑣 = I𝐽𝑛𝑣 − 𝐵(𝑛𝑣)𝐵(𝑛𝑣)+ is a projection matrix to the
ullspace of space spanned by the 𝐵(𝑛𝑣) columns, and 𝐵(𝑛𝑣)+ represents

the Moore–Penrose pseudo-inverse of 𝐵(𝑛𝑣). The order of tensor-matrix
products in different modes is arbitrary [26].

In contrast to the previous two approaches, deciding in which mode
or modes the projection is performed is important. Let us consider the
projection in the first mode and the PARAFAC model

𝑋𝑟𝑒𝑚 = 𝑋 ×1 𝑃1 = 𝑋 ×1

(

I𝐽1 − 𝐵(1)𝐵(1)+
)

.

y using the mode-1 unfolding, this can be rewritten in the following
orm
𝑟𝑒𝑚
(1) = 𝑃1𝑋(1)

= 𝑃1𝐴
(1)𝐺(1)

(

𝐴(𝑛) ⊙ 𝐴(𝑛−1) ⊙⋯⊙ 𝐴(2))𝑇 + 𝑃1𝐸(1)

=
(

O𝐽1×𝑀 , 𝑃1𝐶
(1)
)

𝐺(1)
(

𝐴(𝑛) ⊙ 𝐴(𝑛−1) ⊙⋯⊙ 𝐴(2))𝑇 + 𝑃1𝐸(1).
18 
fter transforming back into the tensor form, we obtain

𝑟𝑒𝑚 =
𝑀
∑

𝑓=1
𝑔𝑓𝑓…𝑓 𝟎◦𝑎

(2)
𝑓 ◦… ◦𝑎(𝑛)𝑓 +

+
𝐹
∑

𝑓=𝑀+1
𝑔𝑓𝑓…𝑓

(

𝑃1𝑎
(1)
𝑓

)

◦𝑎(2)𝑓 ◦… ◦𝑎(𝑛)𝑓 + 𝐸 ×1 𝑃1 =

=
𝐹
∑

𝑓=𝑀+1
𝑔𝑓𝑓…𝑓

(

𝑃1𝑎
(1)
𝑓

)

◦𝑎(2)𝑓 ◦… ◦𝑎(𝑛)𝑓 + 𝐸 ×1 𝑃1.

We can see that the first 𝑀 components are successfully removed as re-
quested. However, the remaining first mode signatures are transformed
by the 𝑃1 multiple. Signatures in other modes (2, 3,… , 𝑁) remain
unchanged.

This result can be easily generalized to the Tucker model and to
situations when the projection is performed in the 𝑛𝑡ℎ1 , 𝑛𝑡ℎ2 ,… , 𝑛𝑡ℎ𝑉 modes.

A.1. Comparison of the component removal methods in SPECTER

This section discusses the performance of three component removal
approaches described in Section 1.3 and Appendix A. Because we

decided to use the PARAFAC model in SPECTER, we focus only on
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Fig. 20. Sub3_post: Normalized amplitude spectra of the original EEG signal (gray) and of the eye blink corrected signal (black) for the short time interval including eye blinks
from Fig. 19.

Fig. 21. Sub3_post: See Fig. 18 description.
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Fig. 22. The ratio of the eye blink-free EEG spectrum and original EEG spectrum at the frontal Fp1, Fp2, and Fz EEG electrodes. Eye blinks were removed by using the Gratton-Coles
& Donchin (blue), ICA (orange), and SPECTER (yellow) algorithms.
Fig. 23. Sub1_post: Original EEG signal (gray) and EEG signal reconstructed by the Gratton-Coles & Donchin, ICA, and SPECTER algorithms (black) at the Fp1 electrode of Subject
from the post-meditation EEG recording.
Fig. 24. Sub1_post: EEG data constructed by merging the original EEG signal of Subject 1 after meditation (Sub1_post) with its reconstruction by the Gratton-Coles & Donchin
algorithm from Fig. 23 (gray). In this case, the data includes enough blink-free time intervals, and the SPECTER algorithm can remove eye blinks present in the first half of the
data (black).
the component removal versions for PARAFAC. The results are demon-
strated by using the Sub1_med3 data, but similar phenomena were also
observed for all other data from Section 3.

General atoms for Sub1_med3 obtained by the tripleC cluster analy-
sis are depicted in Fig. A.25. The first two components were selected
as eye blink related because they represent brain activity in the frontal
20 
region and at low frequencies. Moreover, higher values of their time
scores visually correspond with the eye blink position in the EEG
signal from the Fp1 electrode. This is also supported by the observed
statistically significant correlations between time scores and absolute
amplitudes of the Fp1 signal.
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Fig. A.25. Sub1_med3: General components (columns) detected by the cluster analysis of PARAFAC model with one to ten components - the tripleC algorithm. The frequency
signatures (FS) are depicted in the first row together with the component weight (the corresponding diagonal elements of the core tensor 𝐺𝑐 (3)) in the title. The time scores (TS,
orange) are compared with the original EEG signal from the Fp1 electrode (black) in the second row. Spatial signatures (SS) are plotted as topographic maps with the same color
scale in the third row. Two components representing eye blinks and selected for removal within the SPECTER algorithm are highlighted by red rectangles.
Following the component removal description in Section 1.3, we
considered five cases: (i) component zeroing, (ii) component subtrac-
tion, (iii) projection in the first (temporal) mode, (iv) projection in the
second (spatial) mode, and (v) projection in the third (frequency) mode.
A combined projection within two or all three modes did not bring any
significant improvement; therefore, the results are not presented in this
study.

In the component zeroing approach, the reconstructed signal is cre-
ated only by the non-artifactual general components. For Sub1_med3, it
is the third and the fourth component depicted in Fig. A.25. However,
this approach does not consider the information in the PARAFAC model
error. Consequently, the reconstructed signal looks like a straight line
with close-to-zero values (Fig. A.26, top). These two signals’ different
behavior was observed on shorter intervals without eye blinks. Dif-
ferences became even more visible after signal normalization to unit
maximum (Fig. A.27, top). The same results were also observed for
other real EEG data. Therefore, component zeroing is inappropriate for
the SPECTER algorithm.

Regarding the component projection approach, spatial or frequency
mode projection led to visually similar results like in component zero-
ing (Fig. A.26). The original and reconstructed signals should overlap
over non-blink time intervals, but this is not the case, neither after
normalization to unit maximum (Fig. A.27). We can conclude that
spatial or frequency mode projection is also unsuitable for SPECTER.

The best results were obtained with projection in the first mode or
component subtraction (Fig. A.26). In both cases, the reconstructed sig-
nal overlap with the original signal over the non-blink intervals, except
for some sign changes (Fig. A.27). However, we observed a problem
with the projection in the first mode when focusing on a short time
interval, including several eye blinks. As depicted in Fig. A.28 (bottom),
the original and reconstructed signal overlap on short intervals between
blinks. But during a blink, the reconstructed signal is close to a straight
line by removing too much information from the original signal.

On the other hand, this problem is not present in the component
subtraction approach (Fig. A.28, top). Despite the missing eye blink
free version of data, we can conclude that the signal reconstructed by
SPECTER with component subtraction follows visually more realistic
21 
EEG signal properties compared to a situation when the first mode pro-
jection is used. Therefore, this study uses only component subtraction
in the SPECTER algorithm.

Appendix B. Eye blink removal by the CWT and Tucker model

In this section, we focus on the CWT-Tuc-OC algorithm [24] due to
its similarity to SPECTER.

The continuous wavelet transform (CWT) with the Morlet mother
wavelet and various scales is applied to the min–max normalized EEG
signal in the first step. Since no information about the data tensor con-
struction is provided in [24], we assume that the wavelet coefficients
are directly concatenated into the time points × space (electrodes) × scales
tensor. This assumption is partially confirmed also by the application of
inverse CWT in the last step of the algorithm, which would be difficult
to perform if the coefficients are transformed, for example, the square
absolute values of CWT coefficients used in [11,22].

In the second step, an unconstrained Tucker model from the Tensor-
Toolbox [51] with the same number of signatures in each mode [24,
Section 2.2] is applied. The estimated temporal mode signatures with
the absolute value of either normalized entropy or kurtosis above a
given threshold 1.5 are assumed to represent eye blinks [24].

Then, the selected signatures are replaced by zero vectors resulting
in a modified time component matrix. The eye blink free tensor is
constructed by tensor-matrix multiplication of the estimated core ten-
sor, space, scales component matrices, and modified time component
matrix. For more details, see the component zeroing in the Tucker
model in Appendix A. Finally, the eye blink free signal is reconstructed
by the inverse CWT. However, due to min–max normalization per-
formed before CWT, the reconstructed signal must be multiplied by an
appropriate multiple to have comparable amplitudes with the original
EEG signal on non-blink time intervals.

Despite many similarities between [24] and SPECTER, we would
like to highlight several differences:

1. tensor construction and interpretability: SPECTER focuses
on the amplitude spectrum of the windowed EEG signal in the
tensor construction step and allows for a natural interpretation
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Fig. A.26. Sub1_med3: Comparison of the original, eye blink contaminated EEG signal (gray) from the Fp1 electrode and signal reconstructed by the SPECTER algorithm (black)
with (i) component zeroing, (ii) component subtraction, (iii) projection in the first (temporal) mode, (iv) projection in the second (spatial) mode, and (v) projection in the third
(frequency) mode. To better highlight the differences between original and reconstructed signals, only the first 1.5 min of the signal is shown.
in all three modes. CWT-Tuc-OC uses the continuous wavelet
transform [24], and the scales or pseudofrequencies are usually
more challenging to interpret.

2. tensor size and computational complexity of tensor decom-
position: In CWT-Tuc-OC, the tensor has the size number of time
points × number of electrodes × number of scales. Consequently, a
high sampling frequency with a longer EEG measurement may
significantly increase the power complexity of tensor decompo-
sition and computational time, eventually leading to memory
overflow.4 Nevertheless, this problem can be partially solved by
downsampling [11,22]. In SPECTER, the tensor size is number
of time windows × number of electrodes × number of frequencies,
where number of time windows ≪ number of time points.

4 For example, we were not able to run a Tucker model for a 5-minute long
eal EEG signal with a 128 Hz sampling rate.
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3. tensor nonnegativity: The tensor constructed from the ampli-
tude spectrum is naturally nonnegative, but no signature re-
moval approach can preserve this property. Therefore, the 𝑙𝑜𝑔10
transformed tensor is used in tensor decomposition, and after
signature removal, the inverse transformation (power of 10) is
applied. On the other hand, this intermediate (transformation)
step is not necessary in CWT-Tuc-OC.

4. component inspection: In SPECTER, we analyze the tempo-
ral, spatial, and frequency signatures simultaneously, and only
components which follow artifact characteristics in all three
signatures are considered in the artifact removal step. On the
other hand, CWT-Tuc-OC focuses only on the temporal signa-
tures [24].

5. phase information: Due to the lack of the phase spectrum
information, the SPECTER’s reconstructed signal may include
values with opposite signs over short intervals. Nevertheless, this
problem can be partially solved with simple heuristics described
in Section 2.1. This problem is not present in CWT-Tuc-OC.
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Fig. A.27. Sub1_med3: EEG signal from Fig. A.26 zoomed to a shorter time interval without any eye blink. The original (gray) and reconstructed signal (black) were normalized
o unit maximal value to avoid visual discrepancies between them only due to multiplication.
.1. CWT-Tuc-OC performance

In CWT-Tuc-OC, the data tensor has the size number of time points
× number of electrodes × number of CWT scales. The tensor may be
very large in the first mode depending on the measurement length and
sampling rate. Using a standard computer (OS X, 3 GHz IntelCore i7 or
M1 chip, 16 GB memory) and MATLAB [39], we were not able to run
the Tucker model for EEG measurement exceeding 100 s (with 128 Hz
sampling rate) due to memory overflow. Therefore, only results for
the pre- and post-meditation data (SubX_pre, SubX_post) for all three
subjects and Sub3_med data from Section 3 are included in this study.

In the first step, we analyzed the temporal, spatial, and scale signa-
tures estimated by the Tucker model and their interpretation. Results
for Sub1_pre are depicted in Fig. A.29. Despite the transformation
of scales to pseudo-frequencies, the third mode or scale signatures
(Fig. A.29, bottom right) are difficult to interpret, except for the first
one. Regarding the spatial signatures (Fig. A.29, bottom left), the first

signature SS 1, represents activity in the occipital region, typical for the
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occipital alpha rhythm, and SS 2 characterizes activity in the frontal
region. The other spatial signatures are more difficult to interpret
and are assumed to characterize noise. Nevertheless, Triantafyllopoulos
and Megalooikonomou [24] analyzed only the first mode or temporal
signatures in CWT-Tuc-OC, so we paid more attention to them.

In CWT-Tuc-OC, temporal signatures with absolute values of either
normalized entropy or kurtosis exceeding 1.5 are selected as artifactual
and set to zero vectors. Using this rule, we would choose TS 1, TS 8,
and TS 10. However, looking at Fig. A.29 (top), we see that TS 2, TS
4, TS 6, TS 7, TS 11 or TS 12 have a similar profile to TS 1 and short
intervals of their higher amplitude nicely overlap with the eye blink
occurrence in the EEG signal from Fp1 electrode. Nevertheless, their
absolute normalized entropy or kurtosis is under the threshold. On the
other hand, TS 8 and TS 10 may represent some noise, but they do not
follow the eye blink properties.

Therefore, we considered two versions for component selection: (i)

normalized entropy or kurtosis exceeding 1.5, and (ii) visual criterion
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Fig. A.28. Sub1_med3: Comparison of the original, eye blink contaminated EEG signal (gray) from the Fp1 electrode and signal reconstructed by the SPECTER algorithm (black)
on a short time interval with several eye blinks. In the SPECTER algorithm, the eye blink-related information was removed by (i) component subtraction and (ii) projection in the
first (temporal) mode.

Fig. A.29. Sub1_pre: Temporal (TS, top), spatial (SS, bottom left), and scale (ScS, bottom right) signatures from the Tucker model with 15 components in each mode. Temporal
signatures (black) are plotted with the rescaled EEG signal from the Fp1 electrode (gray). The normalized entropy (entN) and kurtosis (kurN) values are depicted in the titles of
corresponding TS subfigures. To improve the interpretability of the third mode signatures, the CWT scales are transformed to pseudo-frequencies.
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Fig. B.30. Sub1_pre: Original (gray) and reconstructed EEG signal from Fp1 electrode by CWT-Tuc-OC by using either original criterion for eye blink component selection
(normalized entropy or kurtosis above 1.5), or visual inspection of temporal signatures. In addition to component zeroing, we considered component subtraction in the component
removal step.

Fig. B.31. Sub1_pre: The same data from Fig. B.30 zoomed to a shorter time interval with one eye blink. The original EEG signal is in gray, the CWT-Tuc-OC reconstructed signal
is in black, and the SPECTER result is in red.
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based on the similarity between TS and EEG signal from the Fp1 elec-
trode. The original CWT-Tuc-OC algorithm used component zeroing in
the component removal step. However, due to inferior results produced
by component zeroing and superior results provided by component
subtraction in SPECTER, we also considered component subtraction in
the CWT-Tuc-OC component removal step.

As depicted in Fig. B.30 (top), three components with normalized
entropy or kurtosis over 1.5 removed either by component zeroing or
component subtraction were not enough to properly remove eye blinks
from Sub1_pre data. An improvement was observed when using sub-
traction of visually selected time signatures (Fig. B.30, bottom right),
but several eye blinks, especially in the first third of measurement
were still present. Visually the best results were obtained by visual
selection of eye blink components in combination with component
zeroing within CWT-Tuc-OC.

Nevertheless, we also inspected shorter intervals without or with
one to two eye blinks where the differences between the original and
CWT-Tuc-OC reconstructed signal became more visible. The results for
Sub1_pre are depicted in Fig. B.31. Neither combination of component
selection and component removal procedure in CWT-Tuc-OC produced
satisfactory results. The reconstructed signal from the Fp1 electrode
shows different behavior than the original EEG signal on non-blink
intervals or in a neighborhood of a blink. On the other hand, the
signal reconstructed by SPECTER visually overlaps with the original
EEG signal (Fig. B.31, red).

Our attempts to improve the CWT-Tuc-OC results by selecting differ-
ent combinations of time signatures with eye blink-related properties,
applying constraints to the Tucker model, or using more scales in
CWT did not lead to any improvement. Therefore, with the inability
to process more extensive data, the CWT-Tuc-OC algorithm is not the
best choice for eye blink removal in EEG signals.
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