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A B S T R A C T   

Many brain processes in health and disease are associated with modulation of narrowband brain oscillations 
(NBOs) in the scalp-recorded EEG, which exhibit specific frequency spectra and scalp topography. Isolating and 
tracking NBOs over time using algorithms is useful in domains such as brain-computer interfaces or when 
measuring the EEG effects of experimental manipulations. Previously, we successfully applied modified tensor 
methods for identifying and tracking NBO activity over time or conditions. We introduced frequency and spatial 
constraints that greatly improved their physiological plausibility. In this paper we rigorously demonstrate the 
power and precision of tensor methods to separate, isolate and track NBOs using sources simulated with an 
anatomical forward model. This allows us to control the attributes of NBOs and validate tensor solutions. We find 
that tensor methods can accurately identify, separate and track NBOs over time, using realistic sources either 
alone or in combination, and compare favorably to well-known spatio-spectral decomposition methods for NBO 
estimation.   

1. Introduction 

An important part of basic and applied EEG research is the quanti-
tative measurement of narrow-band brain oscillations (NBOs), which are 
characterized by stable frequency spectra and scalp topography, but 
which vary in amplitude over time, often appearing in sustained bursts 
of waves. Well known examples include the posterior rhythm or alpha 
waves, sleep spindles, frontal intermittent delta activity, midline frontal 
theta rhythms, and μ or sensorimotor rhythms over central regions. 
Medications may also synchronize EEG oscillations. For example, some 
drugs produce synchronous beta band oscillations, often waxing and 
waning rhythmically as if beating (Blume, 2006). Current theory states 
that NBOs are primarily generated by the summation of extracellular 
currents surrounding large numbers of synchronously firing cortical 
pyramidal cells (Nunez & Srinivasan, 2006), which are associated with 
sensory, perceptual, cognitive and motor functions (Buzsáki & Draguhn, 
2004) and may serve as electrophysiological signatures of functional 
network activity, such as the default mode network (Jann, Kottlow, 
Dierks, Boesch, & Koenig, 2010). Accurately measuring the activations 
of NBOs over time or conditions is extremely valuable for understanding 

brain functions and for practical and clinical applications of quantitative 
EEGs. Unfortunately, the measurement of NBOs is hindered by prevalent 
broadband cortical activity, or “background EEG.” The broadband ac-
tivity mimics properties of a scale-free system in which the power 
spectral density is inversely proportional to frequency, having a 1/f-like 
power spectrum property (He, 2014). NBO and broadband neuronal 
activities simultaneously propagate through the cortex, cerebrospinal 
fluid, skull and scalp, and contribute to the scalp-recorded EEG. Com-
plex volume conduction properties of these layers substantially 
confound spatial and spectral information of simultaneously active EEG 
sources, making it difficult to separate them (Gloor, 1984; Nunez, 1981; 
Winter, Nunez, Ding, & Srinivasan, 2007). 

Many algorithms have been developed and applied to quantitative 
measurement of NBOs (Cohen, 2017; Hansen et al., 2019; Hyvärinen, 
Ramkumar, Parkkonen, & Hari, 2010; Nikulin, Nolte, & Curio, 2011; 
Srinivasan, Winter, & Nunez, 2006). Spatial separation of NBOs requires 
multichannel EEG recordings, which are treated as multivariate data, 
unlike univariate methods in which each electrode is analyzed sepa-
rately. Linear spatial filter techniques create a set of techniques where 
unfiltered or band-passed filtered multichannel EEG data are 
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decomposed to find a set of spatial weight vectors through which the 
data are projected (filtered) and time-scores1 computed. Each spatial 
vector is assumed to represent a unique scalp EEG pattern whose pres-
ence or absence reflects the activations of a given NBO or a mixture of 
NBOs. In most algorithms, spectral information is not directly used when 
extracting the spatial weight vectors and this information is obtained 
after transferring time-scores into the frequency domain. This leads to 
the problem that if the band-passed or unfiltered EEG data contains 
several NBOs, whose activation partly or fully overlaps in time and 
space, they may be recovered as a composite. This would limit the ac-
curacy of tracking the activation of a single NBO over time. Widely used 
multivariate statistical techniques like principal component analysis 
(PCA) or independent component analysis (ICA) belong to this set 
(Delorme, Palmer, Onton, Oostenveld, & Makeig, 2012; Rutledge & 
Jouan-Rimbaud, 2013). These methods are usually applied as a blind 
source separation method and in general do not require pre-filtering of 
EEG signals into the frequency range of the targeted oscillatory sources. 
On the other hand, methods like spatio-spectral decomposition (SSD) 
(Nikulin, Nolte, & Curio, 2011) or generalized eigendecomposition 
(GED) (de Cheveigné & Arzounian, 2015) require band-passed filtered 
EEG data around the frequency of the extracted NBO. Cohen provided a 
detailed and careful comparison of these methods on simulated and real 
data and discussed their advantages and disadvantages (Cohen, 2017). 

Tensor decomposition represents a different set of techniques where 
information from three or more modalities can be combined to represent 
high-dimensional multivariate data in terms of a small number of multi- 
dimensional latent variables (Kolda & Bader, 2009). In EEG analysis, 
these modalities most often represent frequency (amplitude or power 
spectrum), space (electrodes), and time (time-series of activations). In-
formation and data are arranged into a three-way array (tensor). How-
ever, other modalities such as experimental conditions or treatment 
groups can be added to form a higher order multi-way tensor. This 
creates an advantage over matrix forms (such as PCA or ICA), where 
unfolding of selected modalities into multiple two-way representations 
is needed to interpret results. Tensor decomposition methods, including 
parallel factor analysis (PARAFAC) and Tucker decomposition, are then 
applied to the tensor to identify fundamental latent variables of a unique 
representation of the data (Bro, 1997; Cichocki, Zdunek, Phan, & Amari, 
2009; Tucker, 1966). We denote these elementary components as atoms 
(Miwakeichi et al. 2004) and refer to the process as atomic decomposition 
of EEG (Rosipal, Trejo, Rošťáková, & Cimrová, 2018; Rošťáková, Rosi-
pal, Seifpour, & Trejo, 2020). What makes the tensor decomposition 
approach powerful in EEG data analysis, is not only the possibility of 
extracting separate time-scores (TS) and spatial and frequency weight 
vectors (signatures) of each atom, but also the possibility of applying 
constraints to manipulate their form. For example, non-negativity con-
straints on TS and signatures simplify the physiological interpretation of 
atoms, and additional constraints of unimodality or bimodality could 
lead us to the expected solution consisting of a single frequency char-
acteristic for each extracted NBO or its specific scalp distribution. 
Interestingly, to our knowledge, in EEG research, the unimodality 
constraint imposed on frequency signatures (FS) has not been consid-
ered in literature so far, except in our own studies (Rosipal et al., 2019; 
Rošťáková, Rosipal, & Seifpour, 2020). To extend this understanding of 
constraints for the tensor analysis of EEG, we propose new variants of 
PARAFAC and Tucker models. In addition to unimodality imposed on 
FS, we studied unimodal and bimodal constraints on spatial signatures 
(SS). Respectively, these constraints lead to single point or dipole-like 
distributions of the identified NBOs. To further support this approach, 
we also analyzed scalp EEG data transformed by the surface spline 
Laplacian (SSL) method (Nunez & Srinivasan, 2006). That method filters 

out low spatial frequency components of scalp EEG and sharpens 
localization of NBOs otherwise hidden by the broadband component of 
the EEG signal. 

Another interesting aspect of using tensor decomposition methods in 
EEG research is that the approach has not been carefully validated on 
simulated data where the characteristics and time activations of simu-
lated NBOs in the data are known. Here we use precisely controlled 
simulated data to ensure the accuracy of the methods for identifying and 
measuring NBOs. 

We assume the concept of scalp-recorded EEG as containing NBOs 
with stable spectral and spatial properties which are separable from the 
background broadband EEG. To separate these two components of EEG, 
prior to tensor decomposition, we decompose EEG into its harmonic 
(oscillatory) and broadband (also known as fractal) components. This is 
done by estimating the amplitude spectrum of the broadband compo-
nent and subtracting it from the total amplitude spectrum. For this, we 
use irregular resampling auto-spectral analysis (IRASA) (Wen & Liu, 
2016). As expected, we have found that applying tensor decomposition 
only to the oscillatory spectral component leads to more accurate 
identification and measurement of NBOs than to the total spectrum or 
the broadband spectrum (Rošťáková, Rosipal, Seifpour, & Trejo, 2020; 
Rosipal, et al., 2019). 

We follow the design of Cohen’s excellent simulation study (Cohen, 
2017). The activation of some 2004 cortical sources is generated and 
projected onto the scalp EEG by using a forward modeling approach. 
Simulated data allows us to precisely control cortical position, oscilla-
tion frequency and time activation of the generated neuronal oscilla-
tions. We then add a set of up to seven NBOs, consisting of a unilateral 
source and three bilateral pairs, oscillating at four different frequencies. 
Sources associated with four frequencies may be active at different times 
or their activations may overlap. The anatomical distribution of sources 
follows the results obtained by analyzing electrocorticogram (ECoG) 
signals recorded during a motor imagery task (Stolk, et al., 2019), as 
well as our experimental work focused on motor neurorehabilitation of 
subjects with movement impairments due to a stroke (Rosipal, et al., 
2019). The setting represents the challenging task of extracting several 
NBOs close in frequency and spatial distribution. We investigated the 
performance of all linear spatial filters used in (Cohen, 2017), and we 
chose the SSD method as the best performing method to compare with 
tensor decomposition. 

Finally, we select an example of a real multi-channel, resting-state 
eyes-closed, EEG where a dominant alpha rhythm is present and visually 
detectable. We extracted the PARAFAC atoms and compared them with 
the SSD solution. 

2. Material and methods 

2.1. Tensor models and constraints 

Consider a three-way tensor X ∈ RI×J×K, where I represents the 
number of time points (ordinal series of discrete times at which seg-
ments of EEG time series are sampled for analysis), J is the number of 
electrodes (active electrodes of a referential montage), and K is the 
number of frequencies (bins of the frequency amplitude spectrum). 
Tensor data in their raw form are difficult to interpret. Therefore, they 
are usually represented as a decomposition of lower-dimensional and 
easy interpretable matrices (two-way tensor). In this study we consider 
two tensor decomposition methods – parallel factor analysis (PARAFAC) 
(Harshman, 1970; Carroll & Chang, 1970) and Tucker model (Tucker, 
1966). 

Both methods decompose a three-way tensor X ∈ RI×J×K into factor 
matrices A ∈ RI×M – time-scores, B ∈ RJ×N– spatial signatures, C ∈

RK×O – frequency signatures, and a core (mixing) tensor G ∈ RM×N×O. 
The (i,j,k)th element of X can be expressed as 1 A time-score is a scalar that represents the activation of single NBO or a 

selected set of NBOs during a specific time interval. Activation is understood as 
the EEG power increase at the atom’s specific frequency and spatial location. 
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xijk =
∑M

m=1

∑N

n=1

∑O

o=1
gmnoaimbjncko + eijk, i = 1,…, I; j = 1,…, J;

k = 1,…,K, (1)  

where eijk is the (i,j,k)th element of an error tensor E ∈ RI×J×K. The un-
known factor matrices and core (mixing) tensor are estimated by the 
alternating least squares algorithm (ALS) (Young & de Leeuw, 1978). 
The number of factor matrix columns is user-defined and is usually set 
significantly lower than the number of rows; that is M < < I, N < < J 
and O < < K. 

The main difference between the PARAFAC and Tucker models is the 
form of constraints applied to the mixing tensor G and the number of 
considered hidden factors. PARAFAC factor matrices have the same 
number of columns (M = N = O) and the core tensor follows a super- 
diagonal structure which means that non-zero elements are located 
only on the main super-diagonal of the mixing tensor G. Therefore, for 
PARAFAC, the oth column of C is related only to the oth column of B and 
only to the oth column of A (Fig. 1). These columns of individual mo-
dalities create an elementary unit of the PARAFAC decomposition – an 
atom. Tucker factor matrices may have different numbers of columns, 
which means that non-zero elements may be located on or off the super- 
diagonal of the mixing tensor G. Therefore, in the Tucker model we 
create the atom corresponding to the oth column of C by linearly 
combining a subset of A and B columns (Fig. 2). The coefficients of this 
linear combination are stored in the mixing tensor G. 

To improve the interpretability and stability of the solution, we apply 
realistic constraints to the columns of factor matrices or the mixing 
tensor. These constraints usually take the form of orthogonality, non-
negativity or unimodality (Kiers & Smilde, 1998). The orthogonality 
constraint usually reduces computational time of ALS but limits the 
generality of the solution. As we describe in Section 2.3, our input data 
represent the non-negative oscillatory part of the amplitude spectrum, 
therefore non-negativity seems to be a natural constraint in all three 
modes, that is time-scores (TS), spatial signature (SS) and frequency 
signature (FS). For a given atom, any positive TS value then represents 
its activation, which is the product of frequencies, weighted by the 
positive values of the atom’s FS, at the spatial locations weighted by the 
positive values of the atom’s SS. We design our PARAFAC and Tucker 

models to isolate and measure NBOs. Therefore, we constrain FS to be 
unimodal, so as to obtain a single spectral peak in the FS. This allows us 
to identify atoms with unimodal narrow frequency bands and conse-
quently separate their activations in space and time. However, we stress 
the fact that we are not restricted to this reductionist approach. If our 
aim is to track atoms that combine frequency bands, TS of unimodal 
atoms can be combined into a single time series of activations. For 
example, if a source exhibits fundamental and harmonic peaks with the 
same SS, the TS of each harmonic component can be combined to track 
the activation of the composite over time. An example of where this 
occurs in nature is in the auditory steady-state response, or ASSR, where 
fundamental and harmonics combine to form the integrated response 
(Brenner et al., 2009). Finally, in addition to non-negativity of SS, we 
validated unimodality and bimodality constraints in the spatial modal-
ity. This is motivated by the fact that NBOs may be modeled by syn-
chronous dipoles, which may be unilateral or bilateral and may have 
radial or tangential orientations. Note, that the inherently non-negative 
amplitude spectrum should render the SS of any NBO as a set of 
non-negative values but without non-negativity constraints negative 
values may appear in the tensor decomposition. With the non-negativity 
constraint, we do not see negative values in the SS. Such combination of 
unimodality, bimodality and non-negativity constraints have not been 
considered in EEG literature prior to our applications. In addition, we 
also had to adapt tensor decomposition methods to compute solutions 
with the bimodality constraint. 

In our previous study (Rošťáková, Rosipal, Seifpour, & Trejo, 2020), 
we observed that the Tucker model with the unconstrained structure of 
the mixing tensor faced numerical problems and did not properly detect 
the latent structure of data. On the other hand, we observed a substantial 
improvement when the mixing tensor was constrained to have a 
non-negative structure. Together with the non-negativity constraints 
applied to factor matrices this defines the non-negative Tucker decom-
position (NTD) method (Cichocki, Zdunek, Phan, & Amari, 2009). 

For implementation of both PARAFAC and Tucker models, we used 
version 3.31 of the N-way toolbox (Andersson & Bro, 2000) of MATLAB 
(The MathWorks, Inc.). The toolbox is freely available online at 
http://www.models.life.ku.dk/nwaytoolbox. For the bimodality 
constraint, we used proprietary MATLAB code available upon request. 

Fig. 1. Scheme of PARAFAC model. A 3-way tensor of time-space-frequency data representation is decomposed into a series of atoms each represented by time-scores 
(A), spatial signatures (B) and frequency signatures (C). The scheme depicts the solution with 4 atoms (components), which represents the case M = N = O = 4 of 
eq. (1). 
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2.2. Simulated data 

We applied an anatomical forward model consisting of 2004 dipoles 
placed in gray matter. This model was used in a comparative study of 
linear spatial filters for identifying oscillatory activity (Cohen, 2017) 

and was obtained from the authors’ on-line repository (http://mikexcoh 
en.com/data/, downloaded, June 20, 2020). The model was computed 
using the Brainstorm toolbox (Tadel, Baillet, Mosher, Pantazis, & Leahy, 
2011) in MATLAB. 

We modeled narrowband oscillatory sources with seven dipoles at 

Fig. 2. Scheme of the Tucker model. A 3-way tensor of time-space-frequency data representation is decomposed into a series of time-scores (A), primary spatial 
signatures (B) and frequency signatures (C). The scheme depicts the Tucker model with 5 time-scores, 4 spatial signatures and 6 frequency signature; M = 5, N = 4, O 
= 6 of Eq. (1). Using the mixing matrix G, three atoms with specific frequency signatures are constructed using the extracted time-scores and spatial signatures. 
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four different frequencies 1) a dipole located at the frontal midline re-
gion mimicking a θ rhythm at 5 Hz, 2) left and right hemisphere dipoles 
located within the somatosensory cortex representing a μ rhythm at 
8 Hz, 3) left and right hemisphere dipoles located within the somato-
motor cortex representing a β rhythm at 14 Hz, and 4) left and right 
hemisphere dipoles located within the posterior cortex representing a 
visual α rhythm at 11 Hz (Fig. 3). Each oscillation was generated as a 
sinusoidal signal with a random modulation of frequency and amplitude 
at each time point. This was done by using normally distributed random 
noise in the frequency-domain convolved with a Gaussian kernel 
(Cohen, 2017). The peak frequency and full-width at half-maximum of 
this filter was set to 15 Hz. A different gain was applied to signals of the 
four oscillation frequencies, to mimic the power spectrum proportions of 
these oscillations observed in real EEG data records (Fig. 3). Sixty sec-
onds of a continuous signal of each oscillation frequency were generated 
at the sampling frequency of 256 Hz. These time series were then 
convolved with a Hann window of the length of 5–10 s. The length and 
time position of the window was randomly selected for each of the four 
different simulated frequencies, but the window was same for the left 
and right hemisphere sources of the same frequency. We considered 
scenarios where windows for each of the four different frequencies are 
either overlapped or not overlapped in time. 

A fractional Brownian motion process with the Hurst parameter set 
to 0.6 was used to simulate background brain activity at each of the 
2004 dipoles. The process closely mimics a characteristic scale-free 
property of broadband brain activity, also manifested by a 1/f-like 

power spectrum (He, 2014). The generated traces were multiplied by 
two different gain constants, which yielded different signal-to-noise 
ratios (SNR) for the simulated narrow-band oscillations and broad-
band activity (see the last paragraph of this section and Table 1). These 

Fig. 3. Simulated narrowband brain oscillations (NBOs) without background brain activity. A) Locations and orientations of the NBOs cortical sources, red – 5 Hz θ, 
cyan and yellow – 14 Hz β, green and magenta – 8 Hz μ, blue and black – 11 Hz α. B) First row: topographic maps of selected EEG spectral band amplitudes. Second 
row: topographic maps of the surface spline Laplacian transformed EEG (SSL-EEG). Third row: time-based topographic maps of selected EEG spectral band amplitudes 
taken at the maximal amplitude activation + 0.4 s of each NBO. Fourth row: same as the third row but for the SSL-EEG. C) Left: An example of the 5 Hz oscillations 
convolved with the Hann window (red curve). Right: Activation of the 5 Hz oscillation used for the forward modeling. D) Power spectrum density at two selected EEG 
electrodes for the EEG and SSL-EEG. Topographic maps were created using public-domain Topographic EEG/MEG MATLAB plot functions (Martínez-Cagigal, 2020). 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Summary of the signal to noise ratios (SNR) values for all narrowband brain 
oscillations (NBOs) and the two levels of the added background brain activity 
(SNRhigh and SNRlow). SSL-EEG represents scalp EEG records after surface spline 
Laplacian transformation. The values correspond to the generated data when the 
NBOs’ time activation doesn’t overlap.   

EEG SSL-EEG 

NBO EEG 
electrode 

SNRhigh 

[dB] 
SNRlow 

[dB] 
EEG 
electrode 

SNRhigh 

[dB] 
SNRlow 

[dB] 

midline θ – 
5 Hz 

AFz  7.2  0.1 AFz  12.2  3.3 

left μ – 8 Hz CP3  13.4  4.9 FC3  17.3  8.8 
right μ – 

8 Hz 
CP4  12.9  4.3 FC6  17.8  7.0 

left α – 
11 Hz 

PO3  15.2  5.2 PO3  22.2  13.6 

right α – 
11 Hz 

PO4  14.3  5.2 PO4  22.2  13.3 

left β – 
14 Hz 

F3  15.1  5.7 FC3  19.9  11.6 

right β – 
14 Hz 

F4  15.1  5.3 FC4  21.2  10.1  
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two gains were selected to create sets with a low and high signal-to-noise 
ratios (SNR) between an oscillations and broadband activity. We denote 
these two sets as SNRlow and SNRhigh, respectively. 

After setting the activation at all dipoles, the forward model was 
applied and EEG time series at 64 electrodes arranged according to the 
10-10 system (Seeck et al., 2017) were generated. This was done sepa-
rately for every SNR setting. 

A second variant of EEG data was constructed by applying a spline 
surface Laplacian (SSL) transformation to the generated scalp EEG 
(Nunez et al., 1994), (http://ssltool.sourceforge.net/, Version v1.5). A 
realistic head surface model given by a triangular mesh was used. We 
denote this transformed scalp EEG data as SSL-EEG. The purpose of the 
transformation is to enhance shallow oscillatory peaks, otherwise hid-
den in the signal generated by the broadband brain activity. 

Specific SNR values were computed using the scalp EEG data. This 
was done separately for every frequency and separately for EEG and SSL- 
EEG datasets. First, EEG data without broadband brain activity were 
generated to determine scalp locations with maximum power. Data were 
transformed into frequency domain and EEG channels with maximum 
values for each of the seven oscillatory sources were identified (see 
topographic maps in Fig. 3). At these EEG channels, separately for the 
SNRlow and SNRhigh datasets, the ratio between the power spectrum of 
the oscillation frequency and the mean power spectrum of frequencies 
below (− 1 to − 2 Hz) and above (+1 to +2 Hz) the given oscillation 
frequency was computed. Ten times the log10 of the computed ratio was 
used to set the final SNR value for the given oscillation frequency. The 
same procedure was carried out separately for SSL-EEG signals. Table 1 
summarizes all computed SNR values. Note, for lateralized NBOs, that is 
μ, α and β, we report the average SNR value of the left and right hemi-
sphere when the whole scalp EEG signals are decomposed. 

Data are freely available at http://aiolos.um.savba.sk/~roman/rrLa 
b/datacodes.html. 

2.3. Real EEG data 

To demonstrate the principle and validity of the tensor decomposi-
tion methods on real EEG data, we selected one participant’s 62-sec long 
record of 64-channel EEG. Data were recorded during the rest-state eyes- 
closed condition and were part of a broader neurofeedback-oriented 
study (Trejo, Rosipal, & Nunez, 2009). A BioSemi EEG Recording Sys-
tem (Biosemi B.V.) with a sampling frequency of 512 Hz was used. The 
pre-processing step includes re-referencing using the linked mastoid 
reference, band-pass filtering into the range of 1–35 Hz and 
down-sampling to 256 Hz (with a non-causal anti-aliasing filter cutoff at 
128 Hz). Visual data inspection shows seven detectable bursts of a 
10.5 Hz alpha rhythm, dominant at the occipital scalp region and also 
detected at a subset of frontal and central EEG electrodes. Due to the 
strong 10.5 Hz rhythm at the Iz (inion) EEG channel, this channel at the 
boundary of the SSL model was removed before applying SSL and not 
used in the analysis. The whole segment represents a very stable and 
clean EEG recording, a few visually detectable artifact periods were 
removed. This resulted in 56-sec of 63-channel artifact-free EEG data 
used for the analysis, which was carried out in the same way as for the 
simulated EEG records. 

2.4. IRASA 

Simulated scalp EEG records were split into overlapping 2s long 
segments (898.4 ms overlap) with a sliding step size of 101.6 ms (26 
time points). This yielded 571 segments for a total of 59.89s of simulated 
scalp EEG data. For each 2s segment we applied the IRASA method (Wen 
& Liu, 2016). IRASA decomposes the amplitude spectrum of each 
segment into a fractal (scale-free) and an oscillatory part. The oscillatory 
and fractal components of EEG may be generated by different mecha-
nisms, so it is important to estimate them separately, especially when the 
focus of the measurement is on localized NBOs, as is the case here 

(Buzsáki & Draguhn, 2004; He, 2014). The oscillatory part of the 
amplitude spectrum was obtained by subtracting the fractal part from 
the total spectrum estimate. Negative values of the oscillatory spectrum 
were set to zero and the transformation 10 log10 (x + 1) was applied. 
Transformed oscillatory spectrum data were arranged into a three-way 
tensor X ∈ RI×J×K, as discussed in Section 2.1, where I = 571 repre-
sents the number of all two-second time windows, J = 64 is the number 
of electrodes, and K = 43 is the number of frequencies selected. In this 
study we consider only the frequency range between 4 and 25 Hz with a 
step size of 0.5 Hz. Lower bands (< 4 Hz) were excluded as this would 
need to be treated by considering longer segments needed to estimate 
slow oscillations. Higher bands (> 25 Hz) were excluded due to the 
practical limits of IRASA to adequately separate oscillatory and fractal 
components for these faster frequencies. This is associated with the 
standard EEG problem of correctly estimating higher frequencies due to 
their amplitude reduction related to increasing frequency. 

2.5. Spatio-spectral decomposition (SSD) 

In the literature, linear spatial filters are often used for multichannel 
EEG signal analysis. A detailed and thorough comparison of linear 
spatial filters was carried out on simulated and real data (Cohen, 2017). 
Following Cohen’s results, we decided to compare the spatio-spectral 
decomposition (SSD) method (Nikulin, Nolte, & Curio, 2011) with the 
proposed tensor decomposition methods. 

First, a spatial covariance matrix is computed from the band-pass 
filtered EEG, where the band-pass is set to include the frequency of 
the NBO we wish to recover. Similarly, the second covariance matrix is 
constructed using the filtered EEG signal at neighboring “flanking” fre-
quencies (noise), which derive from the band-pass filtered EEG above 
and below the neuronal oscillation frequency. The SSD then solves the 
generalized eigen-decomposition problem, where one matrix is the noise 
covariance matrix, and the second matrix represents the sum of the 
signal covariance and noise covariance matrices. Solving the eigen- 
decomposition problem will maximize the power in the frequency of 
the studied oscillation and minimize the power at the neighboring fre-
quencies. The set of eigenvectors belonging to the largest eigenvalues 
represents spatial filters with maximal separation (Cohen, 2017). The 
time-scores can then be obtained by applying the spatial filters to the 
multichannel EEG data. The frequency characteristic (signature) of the 
spatial filter can be estimated by transferring time-score values into a 
frequency domain representation. For this purpose, we applied the 
IRASA method and extracted the oscillatory part of the power spectrum. 
To be consistent with the non-negative TS of the PARAFAC and Tucker 
models, we computed and report absolute values of the SSD time-scores. 

The SSD method requires a prior information about the frequency of 
the NBO one wants to recover. If this is known, the method operates 
reasonably well (Cohen, 2017). However, this is often not the case in 
practice, especially if we aim to detect less dominant or sporadically 
occurring rhythms which are hard to specify in advance. Other problems 
may arise if more than one oscillatory activity occurs within the selected 
frequency range. Moreover, these rhythms can be active at different 
times and spatial locations as well as being close in frequency. Although, 
we did not aim to study these aspects of SSD, we also report on a few 
properties of SSD we observed when compared to the focused tensor 
decomposition methods. 

We focus on a whole frequency range into which our target fre-
quencies fall rather than on a single specific frequency. Therefore, the 
EEG signal was band-pass filtered by a 2nd order Butterworth filter in the 
frequency range of 4–15 Hz. This represents the filtered signal including 
the four studied oscillations. The “flanking” frequency interval was set to 
2 Hz below and above this range and the same type of band-pass filter 
was used. 
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2.6. Model order and selection criterion 

With decreasing SNR, the recovery of the rhythms of interest de-
teriorates. A higher proportion of noise usually requires increasing the 
order of the tensor models to detect less dominant rhythms whose power 
approaches the noise level. We varied the PARAFAC model order be-
tween 4 and 15 and consider the Tucker model with 4–8 factors varied in 
each mode. In the case of the SSD model, we investigated the first 15 
extracted components. 

Because we aim to show that tensor decomposition can isolate and 
accurately measure NBOs hidden in the background EEG, we need a 
criterion by which the best solution of each tensor model can be chosen. 
We designed the following criterion, which we denote Crit, reflecting 
maximum separability between the activation and deactivation time of 
each oscillation. For every single tensor decomposition solution, we 
compute the mean value of the estimated TS over the time interval with 
nonzero activation. This value is computed for every oscillation fre-
quency separately. Next, we compute the percentage of TS exceeding the 
computed mean during the time when a given oscillation is not active. 
We transform this percentage value into the interval of 0–1 to get the 
final value of Crit. In other words, Crit = 1 means that we can clearly 
identify EEG segments from times when the detected NBO is activated. 
On the other hand, Crit = 0.5 means that the number of TS inside and 
outside of the activation interval which exceeds the computed mean is 
equal, so the time of activation of the targeted NBO cannot be correctly 
detected from the TS. 

We applied the same principle in the case of the SSD method, where 
Crit is computed using absolute values of the estimated TS. 

3. Results 

3.1. Tensor models and SSD 

For reference, we compared the SSD and tensor methods on both 
SNRhigh and SNRlow sets. Four NBOs were activated with no overlap 
between Hann windows, which determine the cortical time activation of 
each NBO. In Fig. 4A, results of SSD are depicted for the case of a higher 
SNR between oscillatory cortical signals and cortical background ac-
tivity. We observed good separation of θ (5 Hz), μ (8 Hz), and α (11 Hz) 
oscillations. For β (14 Hz), the performance degraded, and we observed 
that components consisting of a mixture of NBOs were present. This may 
represent a problem in practice because the activation of individual 
oscillations becomes challenging to assign unambiguously. This is even 
harder to do when oscillations overlap in time. We observed a small 
change when SSD was applied to SSL-EEG, that is, EEG transformed by 
the surface spline Laplacian method. Decreasing SNR, that is using the 
SNRlow dataset, resulted in substantial deterioration of the method’s 
performance, and only θ and μ NBOs were partially detectable (Fig. 4B). 
Again, we observed no considerable difference when SSD was applied to 
EEG and SSL-EEG dataset. On the SNRlow dataset, the problem with a 
multimodal profile of the power spectral density (PSD) persists. Note 
that the PSD profiles represent an oscillatory part of the SSD time-scores 
spectrum computed by the IRASA method. Like Cohen’s results (Cohen, 
2017), we observed superior and consistent SSD results compared to 
GED, ICA, and PCA methods. 

Focusing our attention on the tensor decomposition methods, in  
Fig. 5A, PARAFAC results for the EEG dataset with SNRhigh are depicted. 
We found a clear separation of all NBOs except θ. In general, we 
observed a lower ability of PARAFAC to detect θ oscillations when EEG 
data without SSL transformation were used. This is due to a higher level 
of the cortical background activity in the low frequency range which 
spreads over all scalp locations. However, after applying a unimodal 
spatial constraint, the θ NBO detection improved. In particular, we 
observed a more vital improvement after limiting the solution to EEG 
electrodes covering only the midline and right hemisphere scalp loca-
tions (Fig. 5B). However, and very importantly, we observed a 

significant improvement in detection of all NBOs on the SSL-transformed 
EEG (Fig. 5C). The application of PARAFAC to EEG with SNRlow resulted 
in impaired detection of NBOs, but we could still detect μ, α, and β os-
cillations (Fig. 6A). However, unambiguous time activation could only 
be determined for the μ and β NBOs. We also observed significant 
improvement in the detection of all NBOs when applying the SSL 
transformation to the SNRlow dataset (Fig. 6B). It should be noted that at 
this SNR level, the SSD method was no longer able to detect any oscil-
lations unambiguously, and the SSL transformation did not lead to the 
improvement of SSD (Fig. 4B). 

3.2. Spatial constraints 

In previous examples of tensor decompositions, we observed unim-
odality of the FS’s, which are represented by non-zero weights in the 
narrow band around the peak frequency. This is an essential feature of 
the decomposition that allows unambiguous monitoring of the activa-
tion of each individual NBO over time. For example, in our previous 
work with real EEG data, we have successfully used the unimodality 
constraint when searching for FS of NBOs (Rosipal, et al., 2019). Now, 
we extend this by applying unimodal and bimodal constraints on the 
spatial solution of the decomposition. The idea behind these constraints 
is restricting the decomposition to solutions where the detection of 
radial and tangential cortical sources would be enhanced. While in the 
case of radial cortical sources, activation of a single scalp location is 
expected, tangential sources would lead to the activation of two spatially 
separated scalp locations. Note that in the case of EEG power spectra, 
this activation is of the same sign, while in the case of EEG time-series, it 
is a location with alternating positive and negative signs, i.e., a dipole 
(see Fig. 3). 

We have already demonstrated the effect of SS unimodality in the 
example of Fig. 5B. Focusing on the local spatial solution, we have 
improved the ability of PARAFAC to detect the radial source of θ. To the 
standard non-negativity constraint, we also added a bimodality 
constraint on SS. Simultaneously, we investigated the effect of using EEG 
electrodes of the left and right hemispheres only. The PARAFAC solution 
for SNRlow and SSL-EEG dataset is shown in Fig. 7. We focused on the μ 
and β NBOs, whose cortical sources are oriented in that they create a 
bimodal distribution in each hemisphere separately. The figure shows 
that the bimodality constraint leads to the expected clearer spatial 
localization of oscillations. Obviously, a priori knowledge is required to 
use such a pre-selected constraint. Here we used the knowledge about 
the lateralization of the μ and β rhythms associated with the process of 
motor imagery (Stolk et al., 2019). The example demonstrates that 
incorporating such an assumption may improve the solution. 

3.3. Activation overlap 

Another critical factor in detecting NBOs is the ability of the tensor 
methods to detect different NBOs whose activations overlap in time. For 
example, in real EEG recordings, we can expect temporal overlap of μ 
and β, which represents an interplay during the process of real or motor 
imagery movement. We have generated a dataset where the simulated 
cortical oscillations overlap in time. This overlap was set to be more 
extensive between the pairs of θ and α, and μ and β (Fig. 8). We 
considered two situations i) where the activation of overlapping NBOs 
occurs only once during the 60 s long sequence, ii) where it occurs twice. 
For SNRhigh, we observed precise detection of all simulated NBOs using 
the EEG as well as SSL-EEG datasets. Results for the SNRlow case and SSL- 
EEG dataset are depicted in Fig. 8. We can see precise detection of all 
NBOs, except for θ, which is somewhat less clear. However, by 
increasing the number of activation periods to two (Fig. 8B), we 
observed improved performance and unambiguous detection of all 
NBOs. This is an essential point indicating that it is appropriate for the 
tensor decomposition methods to maintain a sufficient balance between 
the number of samples representing each condition. Results for the EEG 
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Fig. 4. SSD results. Each column represents absolute time-scores, spatial signature and frequency signature of a single NBO. The frequency signature of the SSD 
components is represented by the oscillatory part of the corresponding time-scores power spectrum. Red Hann window plots overlayed with time-scores represent 
time activation of the oscillation and black Hann windows activation of remaining NBOs. The dashed horizontal line represents the threshold used to compute values 
of Crit (see Section 2.6). A) SSD for the EEG dataset with SNRhigh. B) SSD for the SSL-EEG dataset with SNRlow. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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Fig. 5. PARAFAC results. Description of plots is the same as in Fig. 4. Time-scores of PARAFAC are constraint to nonnegative values. A) PARAFAC for the EEG dataset 
with SNRhigh. B) θ NBO. PARAFAC for the EEG dataset with SNRhigh and with unimodality spatial constraint and right hemisphere electrodes used. C) PARAFAC for 
the SSL-EEG dataset with SNRhigh. 
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dataset are similar to those obtained in the case of non-overlapping 
activation of NBOs. That is a good detection of NBOs up to θ. The re-
sults were again improved by adding the second activation period. 

3.4. Atom tracking 

A critical aspect of NBOs measurement methods is the ability to use 
estimated vectors of spatial and frequency signatures to determine the 

Fig. 6. PARAFAC results. Description of plots is the same as in Fig. 4. A) PARAFAC for SNRlow applied to the EEG dataset. B) PARAFAC for SNRlow applied to the SSL- 
EEG dataset. 
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Fig. 7. PARAFAC with a bimodality constraint on spatial signatures (SS). Nonnegativity constraint on SS is applied to all solutions. PARAFAC was applied to the SSL- 
EEG dataset with SNRlow. The columns represent: 1) the solution without bimodality constrain 2) the solution with bimodality constraint 3) the solution with 
bimodality constraint and the midline and left hemisphere EEG electrodes used 4) the solution with bimodality constraint and the midline and right hemisphere EEG 
electrodes used. A) Solution for μ (8 Hz). B) Solution for β (14 Hz). 
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activation of NBOs on data that has not been used for the decomposition. 
For example, when we need to monitor activation and deactivation of 
the oscillations in real-time or when analyzing completely new test EEG 
measurements. Also, we often try to reduce the set of EEG electrodes 
following the results obtained on high-density multichannel EEG re-
cords. Using the structure of SS, we can reduce the set of EEG electrodes 

only to places represented by high spatial weights. Such an approach 
may lead to minimal performance deterioration of classification or 
tracking algorithms with reduced electrode density (Wallerius, Trejo, 
Matthews, Rosipal, & Caldwell, 2005). Also, when using a smaller 
number of electrodes, we cannot transform EEG data using SSL, but we 
may still use the obtained SSL-EEG solution to determine the placement 

Fig. 8. PARAFAC results of the SSL-EEG dataset with SNRlow. A) A single activation periods B) Two activation periods.  
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of the reduced set of electrodes. 
To validate applicability of the tensor decomposition solution on 

new data, we generated independent training and test datasets. Test data 
were generated using a new sample of the brain background activity and 
consist of four activation periods within the 60s long session. NBO ac-
tivations within each of the four periods overlap (Fig. 9). We also 
generated a new sample of each cortical oscillation to keep a difference 
between data used to estimate the model and testing data. As a training 
model, we used the PARAFAC model estimated on the SSL-EEG dataset 
with SNRlow (Fig. 6B). Time-scores of the test dataset computed as a 
projection to the training PARAFAC model are depicted in Fig. 9. For the 
non-Laplacian EEG dataset, we observed a good ability to detect NBOs, 
except for θ. Recall that the training model was estimated by using SSL- 
EEG data. Time-scores for the SSL-EEG dataset show apparent and un-
ambiguous detection of μ, α, and β rhythms. The detection of θ is less 
specific, but still, the activation of θ can be correctly determined in three 
out of the four simulated periods. By generating new samples, we 
reduced the SNR even more, and in the case of SSL-EEG, we were still 
able to detect μ, α, and β oscillations. 

3.5. The Tucker model 

In all previously reported results, we ran the NTD version of the 
Tucker model in parallel with PARAFAC. We found a good match be-
tween the PARAFC and NTD solutions. This opens the question of when 
to use a more complicated Tucker model. One of the first differences and 
advantages of the Tucker model is the possibility of a more compact 
representation. An example is the case when some modalities of NBOs 
overlap, whether of temporal activation, frequency or spatial distribu-
tion of atoms. We investigated the dataset with the overlap of NBO time 
activations similar to Fig. 8B. In this example, the α and θ rhythms are 
simultaneously active over a wide interval, while the μ and β rhythms 
are simultaneously activated with a ≈ 1s delay after α and θ. Therefore, 
we applied the (2,4,4)-NTD model2 assuming a pattern of two general TS 
profiles. In Fig. 10A we can see the precise estimate of all four FS and SS 
and the expected two TS profiles. Moreover, the mixing tensor G ∈

R2×4×4
+ (a non-negative tensor of order 2×4 × 4), depicted in Fig. 10B, 

follows a sparse structure allowing us to quickly identify the only non- 
zero SS for a given combination of TS and FS as a linear combination 
of primary SS (pSS). In contrast, PARAFAC in this case required model 
orders of 4 or 5 for the μ, α and β rhythms and up to the order of 15 for θ. 
With decreasing SNR, the orders of both models increase; however, the 
NTD model was still able to describe the data structure with fewer 
components than PARAFAC. 

3.6. Real EEG 

A burst of alpha rhythm followed by a period without visually 
detectable alpha oscillations is depicted in Fig. 11A. We identified seven 
similar 2–3 s long bursts of alpha during the whole 56s long resting-state 
eyes-closed EEG recording. We applied the IRASA method, with the 
same setting as in simulated data, to the entire 56 s long recording and 
estimated total and oscillatory parts of the power spectrum for every 2s 
long epoch. After averaging power spectrum parts through all epochs, 
we plot scalp topographiy at 10.5 Hz; that is, at the frequency where the 
maximum power in the alpha frequency range was observed (Fig. 11B, 
C). Topographic maps indicate strong 10.5 Hz oscillations dominant at 
the occipital PO8 site and show the presence at the left occipital and 
frontal-central left and right scalp regions. The presence of the rhythm at 
the more anterior areas may be due to volume conduction, but to 
confirm this goes beyond the scope of this paper. In the next step, we 

applied the same procedure on data transformed with SSL. The resulting 
constraint of the 10.5 Hz signal to the right occipital region aligns with 
the hypothesis (Fig. 11B). 

First, we ran SSD on raw EEG and SSL transformed data. Two 
dominant components whose time-scores matched seven alpha bursts 
were observed in the case of raw EEG and one in the case of SSL 
transformed data. To match the time-scores with the power of the 
10.5 Hz alpha rhythm, we band-pass filtered EEG data at PO7 and PO8. 
We used the bandpass.m routine of MATLAB, with the Wpass parameter 
set to the range 9.5–11.5 Hz. 

For raw EEG (Fig. 12A), two extracted SSD components and two 
PARAFAC atoms represent the left and right posterior activation 
centered at PO7 and PO8 scalp locations. The right hemisphere activa-
tion dominates. Time-scores of the first SSD component and the PAR-
AFAC atom can discriminate seven bursts of the alpha rhythm. We can 
see that the time-scores of the second SSD component (left hemisphere 
activation) shows a little ability to distinguish individual alpha bursts. 
We can also observe that the activation in the anterior regions is 
detected only by PARAFAC (Fig. 12A, atom 1). Further inspection of the 
additional SSD components identified the component with the activa-
tion over the frontal-central region. However, the oscillatory power 
spectrum of this component consisted of several different frequency 
peaks (the dominant peak at 10.5 Hz). Still, the time-scores of this SSD 
component did not clearly discriminate the alpha bursts. 

Both SSD and PARAFAC, applied to SSL transformed EEG extracted a 
single component reflecting the dominant 10.5 Hz activation in the right 
posterior hemisphere (Fig. 12B). This closely matches the expected 
dominant rhythm and its spatial distribution seen in Fig. 11. 

4. Discussion 

With the growing body of evidence on the importance of narrowband 
oscillations in the field of human brain electrophysiology, the need for 
their accurate isolation and measurement from scalp EEG recordings is 
important for tracking the effects of various treatments or manipulations 
over time. Spatial filtering methods represent one of a set of algorithms 
that are often used for this purpose (Cohen, 2017). Often the goal is not 
only the detection of oscillating sources but also their continuous 
monitoring. An example is their use in the field of brain-computer 
interface (BCI) protocols (Lotte et al., 2018) or mental state estimation 
(Trejo, Kubitz, Rosipal, Kochavi, & Montgomery, 2015). One of the 
limitations of spatial filtering methods is their inability to directly 
incorporate frequency information into their solution. The frequency 
information is often obtained by a separate power spectral analysis of 
the time-scores of the extracted component. This limitation often leads 
to the need to filter EEG data into frequency bands containing the ex-
pected NBOs. The approach brings several pitfalls. One of them is the 
lack of accurate a priori knowledge about these frequencies, which may 
not be identifiable in the power spectrum of the recorded EEG data. The 
use of generally defined EEG frequency bands, such as 8–12 Hz for α 
rhythm, is error-prone and ignores substantial individual differences 
related to age and other conditions. For example, using directly 
measured cortical activity during a motor imagery process revealed 
significant variation of the μ rhythm among subjects (Stolk et al., 2019). 
This narrow band activity was in the range of 3–7 Hz in the most 
extreme case and up to the 8–11 Hz range, as generally expected for the 
μ rhythm, in the other case. A similar substantial inter-subject variability 
of the frequency ranges was observed for the β sensorimotor oscillation 
associated with the same motor imagery process. Another example may 
be the often-observed presence of posterior α activity in EEG measure-
ments on electrodes covering more anterior regions, for example the 
sensorimotor cortical area. In this case, the frequency peak of α and the 
motor related μ rhythm can be very close to each other. Such an inability 
to spatially separate EEG rhythms generated by remote cortical areas is 
the result of the well-known volume conduction problem (Nunez & 
Srinivasan, 2006). A real example is a robust presence of the posterior α 

2 The (2,4,4) notation denotes the NTD model with two time-score compo-
nents, and four spatial and frequency signatures. 
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rhythm on the EEG electrodes covering the sensorimotor area of a pa-
tient with a cortical lesion in the left hemisphere (Rosipal et al., 2019). 
In this case, we detected the α peak at 9.25 Hz and the μ rhythm peak at 
7.75 Hz, effectively creating only a 1.5 Hz difference between the peaks. 
It is not only challenging to apply such narrowband pre-filtering of the 
EEG signal, but above all to determine the appropriate frequency ranges 
of these filters. The often used α range of 8–12 Hz or lower α range of 
8–10 Hz, would essentially lead to filtering out a large part of these two 
specific NBOs. A partial solution to mitigate these problems is using the 
filter-bank approach and to search for an answer in each filter bank 
(Ang, Chin, Zhang & Guan, 2008). However, the filter-bank technique is 
often applied only in the case of supervised learning, such as building a 
classifier. However, with the problem of determination and clear 
neurophysiological interpretation of all present NBOs, such an approach 
will also encounter the problems mentioned above. 

Although our primary goal was a thorough analysis of simulated 
data, we also performed a simple limited validation of the fundamental 
properties of tensor decomposition using real EEG data from a resting- 
state eyes-closed condition, where the presence of discrete alpha 
bursts was visually detectable. We found that, as with simulated data, 
the PARAFAC approach was highly effective at isolating the spatial and 
spectral profile of the alpha bursts and tracking their activations accu-
rately over time. 

We find that tensor decomposition is a powerful and elegant method 
for detection and monitoring NBOs. Using the tensor structure, we can 

represent the modalities of frequency, space and time separately. This 
allows us to introduce a priori information about the expected form of 
each modality individually. We incorporate this information into the 
tensor decomposition in the form of constraints. It is interesting that, for 
example, limiting the frequency modality to a unimodal form has not 
been more systematically used in the EEG literature, apart from our 
previous work (Rošťáková, Rosipal, Seifpour, & Trejo, 2020). We believe 
that this simple modification of the tensor decomposition solution leads 
to an elegant estimate of NBOs with unambiguous frequency patterns. 
This facilitates not only the isolation of NBOs but also their unambigu-
ous time activation, because each oscillation can be tracked separately. 
On the other hand, if the goal is to monitor the activation and an 
interplay of multiple rhythms, we can easily combine FS and SS of 
different atoms and create a time-scores composite. For example, sup-
pose we observe multiple NBOs in the beta frequency range (Rosipal 
et al., 2019). In that case, we can still consider their combination and 
monitor activation throughout the whole beta range, not just the acti-
vation of individual NBOs. 

In this article, for the first time, we also dealt in more detail with the 
possibility of using unimodal and bimodal restrictions on the form of the 
SS. We have shown that this allows accurate and spatially more precise 
detection of radial and tangential sources of cortical oscillations. The 
approach also allows for reducing EEG spatial information to a small 
number of areas, EEG electrodes, on the surface of the head. This is an 
important factor for the application of the tensor solutions when the 

Fig. 9. Time-scores after the projection of test data to the PARAFAC model depicted in Fig. 6B. Top row: Time-scores of the EEG dataset with SNRlow. Second row: 
Time-scores of the SSL-EEG dataset with SNRlow. Third and fourth row: spatial and frequency signatures of the training model depicted in Fig. 6B. 
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continuous monitoring of the activation and deactivation of selected 
NBOs is the focus, for example, in the case of building BCI protocols 
(Rosipal, Porubcová, Cimrová, & Farkaš, 2018). 

We observed superior performance of tensor decompositions when 
applied to EEG data transformed using the surface spline Laplacian. 
Such a transformation results mainly in the change of the spatial dis-
tribution of NBOs but is less significant in changing the temporal vari-
ation of the oscillating sources in traces of EEG themselves. This explains 
the SSD method’s almost negligible changes when applied to the SSL- 

EEG dataset and compared to the EEG dataset. In contrast, the reduc-
tion of spatial information after the SSL transformation facilitates 
finding a compact SS solution of the tensor decomposition. Importantly, 
as we have shown in the example (Fig. 9), a tensor solution obtained 
from the SSL-EEG dataset makes it possible to compute time-scores of 
new EEG test data not transformed via SSL. However, further quanti-
tative study needs to be carried out to validate this step. 

The tensor decomposition approach used in the article incorporates 
the IRASA method which separates the oscillatory component of the EEG 

Fig. 10. A) The (2,4,4)-NTD model applied to EEG dataset with SNRhigh and NBOs time activation similar to Fig. 8B, see Section 3.5. The model consists of two time- 
scores (TS), four primary spatial signatures (pSS), and four frequency signatures (FS). For each combination of TS (first column) and FS (first row), a topographic map 
of the corresponding spatial signature (SS) is plotted. The SSs represent a linear combination of pSS with weights representing elements of the mixing tensor rows 
corresponding to the spatial modality. B) Graphical representation of the mixing tensor G ∈ R2×4×4

+ . G(1,:,:) represents the first mode slice of G associated with TS 1, 
which was obtained by fixing the first mode index to 1 and varying the indices in the second and the third mode. Similar for G(2,:,:). 
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power spectrum. This allows us to focus only on the oscillatory sources 
of the power spectrum and leads to a more accurate and more 
straightforward estimation of NBOs. We tested the approach and 
confirmed its usefulness and validity on real data representing EEG 
rhythms of motor activation and deactivation (Rosipal et al., 2019; 
Rosipal, Porubcová, Cimrová, & Farkaš, 2018). 

There are other exciting elements of the tensor decomposition. For 
example, the elimination of unwanted solutions masking the solutions 
we are interested in. We believe this interesting element is often unused 
when tensor methods are applied to EEG data analysis. The principle 
consists of the initial estimation of the tensor solution and the subse-
quent subtraction of the information of unwanted solutions from the 
initial tensor representation. We can call it the deflation step. In the 
second stage, we work with a tensor representation free of unwanted 
solutions. The procedure proved to be useful in the exploratory analysis 
of EEG signals for lateralized attention network function (Trejo, Rosipal, 
& Nunez, 2009). Another interesting feature of the tensor methods is the 
possibility of incorporating a larger number of modalities and analysis of 
multi-way tensor data structures. For example, we have shown that 
incorporating a session modality leads to the estimation of general NBOs 
through EEG measurements recorded during multiple days (Rošťáková, 
Rosipal, & Seifpour, 2020). Several other types of modalities were used 
in the literature (Mørup, Hansen, Herrmann, Parnas, & Arnfred, 2006). 

Out of the two tensor decomposition methods—PARAFAC and the 
Tucker model—the usage of PARAFAC dominates in the literature, 
mainly due to a simpler model parameter setting and the interpretation 
following the principle of the same number of components in each 
modality. In the Tucker model, the factor matrices are related through 
the mixing tensor, and the interpretation of the results requires more 
thorough inspection, especially when the mixing tensor is dense. When 
the mixing tensor is sparse, the Tucker model can provide more detailed 
information about the data structure than PARAFAC. We found the NTD 
version of the Tucker model suitable for EEG data analysis and useful for 
facilitating interpretation of the obtained solutions (Rošťáková, Rosipal, 
Seifpour, & Trejo, 2020). The Tucker model may provide a parsimonious 
representation of data when compared with PARAFAC. One of the pit-
falls of PARAFAC is the degenerate solution. This is the case if data don’t 
follow an exact multilinear, in our case trilinear, structure (Paatero, 
2000; Mørup, Hansen, Arnfred, Lim, & Madsen, 2008). This may lead to 
the extraction of highly correlated factors. In our setting, an analogy of a 

degenerate array (Paatero, 2000), may be the case where several NBOs 
share the same time activation or their spatial distributions and fre-
quency peaks are close. The Tucker model allows accurate representa-
tions of such data and avoids degenerate solutions. 

In this study, we tried to find the best possible solution for either 
PARAFAC or NTD models, focusing on precise time detection of NBOs 
we used the Crit for this purpose (Section 2.5). Using TS, we designed the 
criterion intending to find the solution for each NBOs, such that maximal 
separation between the activation and deactivation of a given NBO is 
achieved. However, it must be noted that when real EEG data are 
analyzed, identification of NBOs from a set of decomposed candidate 
atoms is much harder task (Rošťáková & Rosipal, 2021). This is espe-
cially true for NBOs with a low SNR between their amplitude and 
background noise. Therefore, we recommend applying the following 
clustering approach for real experimental data analysis (Rošťáková, 
Rosipal, Seifpour, & Trejo, 2020). Because it is difficult in advance to 
estimate a correct order of the PARAFAC model or the number of 
components in each modality of the Tucker model, we run several 
PARAFAC or Tucker models with varying order and collect all results of 
the decomposition–atoms. In the second step, the atoms from all 
considered models are assigned into clusters according to the similarity 
between their TS, SS and FS. This reduces the number of solutions and 
allows us to focus on dominant clusters, which represent typical atoms 
systematically extracted from models of different order. The final atoms 
can be then represented as the cluster means in each modality. For the 
clustering step, we have a good experience with the nonparametric 
density-based clustering (DBSCAN) (Ester, Kriegel, Sander, & Xu, 1996), 
the method we used in (Rošťáková, Rosipal, Seifpour, & Trejo, 2020). 
Naturally, the final and important step is to put these final extracted 
atoms into the context of the underlying experiment, cognitive or mental 
state of the subject, etc., and in this way to validate their relevance. 

One limitation of tensor methods as proposed here is that they cannot 
be used to estimate traveling EEG waves. The field of traveling waves in 
EEG has been developing and will no doubt play an important future role 
in basic and clinical electrophysiology (Nunez & Srinivasan, 2014; 
Zhang, Watrous, Patel, & Jacobs, 2018). But the tensor methods as 
formulated here require a fixed spatial distribution of scalp potentials 
associated with NBOs. This is also a limitation of other spatial decom-
position methods, such as ICA or SSD. 

In this study, we focused on the qualitative side of the detection of 

Fig. 11. A) An example of an alpha rhythm burst followed by a period of its absence. B) Topographic maps of the total and oscillatory power spectral parts at the 
10.5 Hz frequency. Maps for raw and SSL transformed EEG are depicted. C) Total and oscillatory power spectrum of raw EEG computed at four selected EEG 
electrodes. The + marker specifies the 10.5 Hz frequency. 
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Fig. 12. SSD and PARAFC results on real EEG. Each column represents absolute time-scores, spatial signature and frequency signature of each component. The 
frequency signature of the SSD components is represented by the oscillatory part of the corresponding time-scores power spectrum. Within the time-scores (grey) 
plots, the power of the 10.5 Hz alpha rhythm is also depicted (black). The power was computed at the PO8 electrode for SSD component 1 and PARAFAC atom 1, at 
PO7 for the component and atom 2. In the case of PARAFAC, each power value represents the power of the 10.5 Hz alpha rhythm averaged across a 2 s long window 
to match the PARAFAC time-scores. For illustrative purposes, the power values of the 10.5 Hz alpha were rescaled to the 0–0.25 interval; all other values, but the 
oscillatory power spectrum of SSD components, were rescaled to the 0–1 interval. A) Results on raw EEG. B) Results on SSL transformed EEG. 
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NBOs using tensor methods. For this purpose, we used simulated data 
where we can precisely control and evaluate the obtained solutions. 
Interestingly, despite the more than 15 years of use of tensor methods in 
the field of EEG data analysis, the validation of the approach on simu-
lated data has not been systematically studied. Such an analysis provides 
a lot of essential knowledge about the tensor methods properties 
necessary for application to real EEG data. Systematic analysis and 
detailed quantitative validation and comparison of the tensor decom-
position and comparisons with existing methods are a large part of our 
ongoing research. 
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