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ABSTRACT 

We developed new algorithms for Advanced Physiologi-
cal Estimation of Cognitive Status (APECS), which sig-
nificantly improved the estimation of cognitive workload 
and shed new light on the estimation of mental fatigue. 
More specifically, we used atomic decomposition to 
identify unique sources of brain electrical activity as 
measured by the EEG recorded in human participants as 
they performed tasks that induced different mental states, 
including engagement, mental workload, and mental fa-
tigue. We tested two types of atomic decomposition, 
each of which identifies unique EEG sources simultane-
ously in three dimensions: 1) atoms with dimensions of 
power spectral density, space (electrode position), and 
time (time on task or task conditions), or 2) atoms with 
dimensions of magnitude squared coherence, spatial rela-
tionships (electrode pairs), and time. For tasks that in-
duced mental workload, we found atoms that combine 
sources in the theta (4-8 Hz) and alpha (8-12 Hz) EEG 
frequency bands consistently in individual participants at 
different times of day and on different days.  The tempo-
ral variations of the atoms clearly reflected the levels of 
mental workload induced by varying task conditions. For 
a task that induced mental fatigue, we found atoms that 
tracked the development of mental fatigue in individual 
participants over time, while reflecting underlying 
changes in power or coherence of primarily theta-band 
EEG. Our results show that atomic decomposition is a 
valuable new approach to the identification and meas-
urement of EEG sources for monitoring cognitive status. 
By comparing these results with results of prior analyses 
using the same data sets, we observed that atomic de-
composition can supplement or overcome existing ap-
proaches based on conventional two-dimensional space-
time or frequency-time decomposition of EEG. 

1. INTRODUCTION  

Over the past four years, scientists at PDT have devel-
oped several advanced computational algorithms for 
real-time classification of mental states that can run on 
small hand-held computers or be embedded in the con-
trols of vehicles, aircraft, spacecraft, and even in the 
helmets of foot soldiers, pilots, and astronauts. The PDT 
algorithms are known as APECS, which stands for Ad-
vanced Physiological Estimation of Cognitive Status, and 
have been rigorously tested in a series of controlled ex-
periments sponsored by the US Army Research Of-

fice.1,2,3 The algorithms also build on related studies 
from the US Air Force and NASA.4,5 These studies have 
proven the accuracy of the APECS algorithms for EEG-
based detection and classification of mental states includ-
ing engagement, workload, and fatigue during the per-
formance of mental work.  

The APECS algorithms use proprietary implementations 
of cutting-edge machine learning and statistical pattern 
recognition, including kernel partial least squares 
(KPLS) and parallel factor analyses (PARAFAC). By 
applying these methods to massive amounts of experi-
mental data, PDT scientists decomposed multi-sensor 
EEG spectra into a small set of elemental components or 
atoms that are important for estimating mental states. 
The APECS algorithms are designed to handle practi-
cally unlimited numbers of input channels and spectral 
resolutions. The algorithms are also highly adaptive, re-
quiring no a priori information the spatial or spectral dis-
tributions of the atoms.  

2. METHODS  

Neurocognitive Databases. We have access to five data-
bases from controlled studies of physiology and human 
performance, including four studies that focused on es-
timation of cognitive workload and detection of cogni-
tive overload. Drs. Trejo and Rosipal directed experi-
ments, wrote algorithms or analyzed data from each of 
these studies and are uniquely familiar with the data-
bases. We used three of these databases to develop and 
test APECS algorithms. All data from these studies were 
collected with informed consent and approved IRB pro-
tocols. The data were coded such that the identities of the 
participants will be unknown to PDT analysts. The three 
databases used in the present project included:  

1. USAF-C: C2ISR Multimodal Study of UAV Opera-
tor Readiness (6 multi-test participants17)  

2. USA-T: Army Toxins II Multimodal Study of Cog-
nitive Overload (8 test-retest participants4) 

3. NASA-C: NASA Cognitive Fatigue Database (16 
participants, public domain6)  

4. USN-B: Navy Biopsychometric Assessment Pro-
gram Database (8 test-retest participants ) 

5. NASA-E: NASA ERTAS Database (8 test-retest 
participants13) 
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2.1 Task 1. Analysis of Tasks, Workload Metrics, 
and Physiological Data  

The aim of this task was to decompose each experimen-
tal database to define workload, time resolution, and 
physiological metrics. For each database, we followed a 
three-step process of algorithm adaptation and testing 
(Figure 1). First, we analyzed each task from a neuro-
cognitive standpoint to guide our selection of workload 
and physiological metrics and time resolution. For ex-
ample, the USAF-C database includes visual signal-
detection, working memory, and executive control tasks. 
Perceptual tasks, such as signal detection, would activate 
visual-spatial processing networks located in occipital, 
parietal, and inferotemporal cortex, which will modulate 
alpha 1 and alpha 2 powers and coherence. The working 
memory demands of the USAF-C task would activate the 
anterior cingulate and dorsolateral prefrontal cortex, pro-
ducing increased midline frontal theta rhythms.,6 This 
prior knowledge of functional specialization guided our 
selection of EEG electrode sites, frequency bands, and 
spatial / temporal resolution for power and coherence es-
timates. 
The temporal resolution of EEG analysis for each task 
was long enough to reliably estimate parameters but 
short enough to detect changes related to task conditions. 
By applying these principles to each task, we produced a 
set of analysis parameters (Table 1). 

2.2 Task 2. APECS-W Algorithm Adaptation 

As suggested by a current theory of local/global EEG 
coherenceError! Bookmark not defined. and experi-
ments on EEG and cognitive function,7 we hypothesize 
that cognitive workload is reflected by the desynchroni-
zation of a parietal alpha atom defined by long-range co-
herence with frontal regions and the synchronization of a 
frontal midline theta atom defined by local coherence 
with neighboring frontal regions. Using this guiding hy-
pothesis and the analyses from Task 1, we structured two 
APECS-W algorithms for each database. In the first al-
gorithm, or APECS-Wp, aimed at power spectral density 
effects, the three-way input matrix consisted of EEG 
power spectral densities for frequency bins from 1-25 
Hz, electrode position, and time of measurement (which 
reflected task-induced workload transitions). In the sec-
ond algorithm, or APECS-Wc, aimed at spectral coher-
ence effects, the three-way input matrix consisted of 
multi-scale EEG coherence spectra, electrode-pair (all 
unique pairs of electrodes excluding self-pairing), and 
time. For the NASA-C database we structure two similar 
algorithms, APECS-Fp and APECS-Fc, using similar 
principles, but different constraints (see below).  
 

Task 
Code 

Percep-
tual & 
Cogni-
tive 

Neural 
Sources 

EEG 
Band-
width 

Range 
Of 
Tem-
poral 

Mini-
mum 
Fre-
quenc

Proc-
essing 
De-
mands 

Reso-
lution 

y 
Reso-
lution 

USAF-
C 

Visual 
signal 
detec-
tion 
 
Work-
ing 
mem-
ory & 
execu-
tive 
control 

Parietal-
occipital 
Fronto 
central 

8-25 
Hz 
 
4-8 
Hz 
8-12 
Hz 

2-3.5 
s 
 
2-3.5s 
2-8 s 

1.0 Hz
 
1.0 Hz
0.5 Hz

USA-T Visual 
signal 
detec-
tion 
 
Audi-
tory 
lan-
guage 
proc-
essing 
Work-
ing 
mem-
ory  & 
execu-
tive 
control 

Parietal-
occipital 
Tempo-
ral-
central 
Fronto 
central 

8-20 
Hz 
 
8-20 
Hz 
 
4-12 
Hz 

2-3.5 
s 
 
2-3.5s 
 
2-8s 

1.0 Hz
 
1.0 Hz
 
1.0 Hz

NASA-
C 

Work-
ing 
mem-
ory & 
execu-
tive 
control 

Fronto 
central 

4-18 
Hz 

2-13 s 0.5 Hz

Table 1. Spatial, frequency, and temporal analysis pa-
rameters for the three task databases. 
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Figure 1. Three-step process of APECS-W algorithm ad-
aptation and testing. In Step 1, we use neurocognitive 
theory and data to analyze tasks to define workload, 
time, and physiological metrics. In Step 2, we will define 
preprocessing, feature selection/extraction, normalization 
methods and adapt the APECS structure and order to the 
features. In Step 3 we will select random training, cross-
validation, and testing partitions then train and test the 
algorithm. In future studies we may also test the resulting 
algorithm for tolerance of noise and sensor loss, and then 
apply optional stabilization methods to improve test-
retest reliability. 

In the present analyses the outputs consisted of unique 
atoms for which we obtained the loadings using 
PARAFAC decomposition with the following con-
straints: 

• We corrected EEG records for ocular artifacts and 
segmented them into non-overlapping contiguous 
epochs of 2-s duration, providing frequency resolu-
tion of 0.5 Hz.  This resolution was satisfactory for 
all task requirements (Table 1). 

• We performed outlier detection by removing points 
with unduly high leverage. For this we did an initial 
PARAFAC decomposition and then clipped data 
points for which individual loadings in any one di-
mension exceeded a fixed percentile of the popula-
tions of loadings for that dimension in the given ex-
periment.  The percentiles we used ranged from 90 
to 99%. After removing such points we did a second 
decomposition and retained the loadings as results. 

• We imposed a constraint of non-negativity for load-
ings on all dimensions of the PARAFAC decompo-
sitions. In addition, for the NASA-C dataset, coher-
ence analysis, we used an additional constraint of 
unimodality on the frequency dimension. 

• We did not rescale or normalize data for any dimen-
sion. However, for display purposes only, we scaled 
loadings for the time dimension for comparing at-
oms with very different loading means and variances 
within experiments. 

• Units of power spectral density were HzdB . Units of 
coherence were the conventional dimensionless 
units of magnitude squared coherence ranging in 
value from 0 to 1, where 0 means no coherence and 
1 means perfect coherence at a given frequency. 

Two approaches were used to assign initial values to the 
loadings before iterating solutions to the PARAFAC de-
compositions. For both APECS-W algorithms we used a 
method of performing several small runs then averaging 
the resulting loadings and using the averages to initialize 
the loadings for complete decompositions.  For the 
APECS-F algorithm, we used singular value decomposi-
tions in each dimension to estimate the initial loadings. 

For APECS-W we used a uniform convergence criterion 
of 1.0×10-6 for iterating the algorithm, i.e., iteration 
ceased when the change in total variance explained was 
less than 000,101 th of one percent. For APECS-F the 
convergence criterion was 0.001 or an improvement in 
the model fit of less than 101 th of one percent. 
After preprocessing all EEG records to remove EOG ar-
tifacts we performed three-way unsupervised PARAFAC 
decompositions to identify the atoms (multidimensional 
components of variance) in the three-way input matrices. 
For the APECS-Wp and APECS-Fp algorithms, the EEG 
atoms, A, are defined as three-way sources with dimen-
sions of frequency, f, electrode, e, and time, t (Eq. 1). 
Each atom is estimated by two normalized vectors (a, b), 
a score vector c and a noise term, ɛeft. 
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  (Eq.  1) 

2.3 Task 3. Algorithm Training and Testing  
The structure of the APECS-W algorithm was similar for 
each database, but we adapted the variable inputs, out-
puts, and preprocessing requirements of each database to 
a format that was suited for cross-study validation. Since 
all of the decompositions we did were unsupervised, 
there was no need for formal training, testing, and valida-
tion sets.  However, for the USAF-C and USA-T datasets 
we used sessions performed at different times of day and 
on different days for this purpose.  For example, we used 
session data from Day 1 to estimate the atoms and then 
projected the EEG data for Day 2 using the weight vec-
tors for each atom to reproduce the time course of each 
atom across workload conditions.  No test-retest valida-
tions were performed as of yet for the NASA-C data set. 

Data were collected from six participants in the USAF-C 
study (denoted 'B', 'C', 'E', 'G', "I', and 'K'), each of whom 
completed three sessions (trial repetitions). Participants 
were trained to stable performance on a simulated Un-
manned Air Vehicle (UAV) task. The task consisted of 
monitoring the progress of four UAVs as they flew a 
preplanned mission, monitoring UAV resources, and 
classifying synthetic aperture radar images acquired by 
sensors in each UAV. Each run contained six different 
indicators of mental states assigned by the experiment-
ers; however, indicators for only two workload levels 
(low and high) were provided to us due to a security re-
striction. Therefore, we used only the data from the two 
periods designated as high- and low workload. Nineteen 
channels of EEG (placed according to the International 
10-20 System with a linked mastoid reference) were 
available in this study. One-channel ECG and two chan-
nels of bipolar EOG (vertical and horizontal) were also 
recorded.  
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First, the EEG data were down-sampled to 128 Hz sam-
pling rate from the original sampling rate of 256 Hz. 
Next, data were segmented into non-overlapping con-
secutive windows of 2-s duration. As in the initial analy-
ses30 (Appendix 1), the power spectral density (PSD) 
was computed for each segment using the Thomson 
Multi-taper method.  Initial analyses revealed a high 
level of power at frequencies below 6 Hz. Power at these 
frequencies often arose from motion artifacts and con-
founded the PARAFAC analyses of EEG.  Therefore, 
only the frequencies in the range of 6 to 25 Hz were con-
sidered in this study. We repeated this procedure for each 
EEG channel separately and constructed a three-
dimensional matrix, A(E × F × T), with E time segments, 
F electrodes and PSD estimates at T frequencies (Eq. 1). 

3. RESULTS 

In this project we designed and tested an APECS work-
load algorithm (APECS-W), to increase the accuracy and 
reliability of estimated cognitive workload and detect pe-
riods of cognitive overload. We aimed for a 20% in-
crease in accuracy and test-retest reliability. Our mini-
mally successful criterion was 10%. Our prior simula-
tions showed that even a 10% improvement will move 
estimation of workload near the lower range of accuracy 
now possible for estimation of engagement or fatigue. 
We considered distinguishing engagement from work-
load, but our focus was on discriminating workload 
states pertaining to active task engagements. We tested 
the APECS-W algorithm using two databases (USAF-C, 
USA-T) described above. A formal classification analy-
sis was outside the scope of this STIR project, so we 
made informal estimates of accuracy based on inspection 
of the data and comparisons with prior results. We will 
perform formal classification analyses in our future de-
velopment of the APECS algorithms. For now, our ex-
perience with all of the data sets examined here suggests 
that there was an improvement of more than 20% in the 
estimation of cognitive workload using atomic decompo-
sition, as compared to our prior methods using two-way 
analyses. For the fatigue data, we estimated a lower level 
of improvement, which is to be expected from the al-
ready-high accuracies of prior classifications.  
We designed the APECS algorithm to be adaptable to a 
wide range of tasks that require human performance or 
supervision. In particular, we adapted the algorithm to 
the estimation of mental fatigue, and will refer to this al-
gorithm variant as APECS-F. Although we did not set 
out to compare APECS-F quantitatively with prior re-
sults, we report below that APECS-F was highly success-
ful in identifying EEG atoms that track the development 
of mental fatigue in individual participants. Due to space 
limitations, only a portion of the results are presented 
here; a full set appears in the corresponding poster. 
The PARAFAC model has been run two times. After the 
convergence of the first run the points with high values 
of the residual variance and leverage, that is, points indi-

cating noisy samples, were inspecting. The points ex-
ceeding 95 percentile of the residual variance and lever-
age distribution were removed and the PARAFAC model 
was run again. In general, this procedure removed points 
with very high values of temporal loadings (signatures). 
The core consistency10 of these final models was in all 
cases greater than 85% indicating a good model fit. 
First, the PARAFAC model was run using the full set of 
19 EEG electrodes. The results of the three-atom 
PARAFAC model for Participant B are depicted in 
(Figure 2). It can be observed that the temporal signa-
tures of the second and third atoms separate the periods 
of the high and low workload. However, high values of 
the loadings vectors at frequencies above 20 Hz indicate 
that this can be due to the movement components super-
imposed to EEG. To investigate this effect the spatial 
loading vectors for Atom 2 and 3 are plotted in Figure 3.  
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Figure 2. Loadings of three PARAFAC atoms extracted 
from EEG recordings of Participant B using 19 elec-
trodes. Left panel: Temporal signatures of the EEG at-
oms. Red marks indicate periods of high workload, blue 
line marks the low workload periods. Vertical dotted 
lines separate three distinct experimental sessions. Bot-
tom panel: Detailed plot of temporal loadings of Atom 2. 
Right panel: Spectral signatures corresponding to atoms 
numbered in the left panel. 

High spatial loading values can be observed at T3, T4, 
F7 and Fp2 sites (Atom 2) and at the electrode sites Fp1, 
Fp2, T5, T6 and F7 for Atom 3. These electrodes are 
generally known to be susceptible to the movement arti-
fact. Therefore in the next step we have removed these 
electrodes and run the PARAFAC model again. The re-
sults with the reduced set of electrodes are depicted in 
Figure 4. 
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Figure 3. Participant B. Comparison of the spatial signa-
tures corresponding to Atom 2 and Atom 3 plotted in 
Figure 2. 
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Figure 4. Loadings of the three PARAFAC atoms ex-
tracted from EEG recordings of Participant B using the 
reduced set of 12 electrodes. Left panel: Temporal signa-
tures of the EEG atoms. Red marks indicate periods of 
high workload, blue line marks the low workload peri-
ods. Vertical dotted lines separate three distinct experi-
mental sessions. Bottom panel: Detailed plot of the tem-
poral loadings of Atom 2. Right panel: Spectral signa-
tures corresponding to the atoms numbered in the left 
panel. 

Now three distinct atoms can be observed. While the 
third atom seems to represent overall EEG power indi-
cating 1/f trend, the first and the second atom seem to be 
two spectrally complimentary atoms which when applied 
together discriminate periods of low and high workload. 
However, although the spectral concentration of the sec-
ond atom around 20 Hz and its decay at higher frequen-
cies indicate that this atom may represent the beta com-
ponent in EEG, the spatial distribution shows high influ-
ence of the frontal F3, F4 and F8 sites. Therefore the in-
fluence of movement artifact in this atom cannot be ruled 
out. Note that using the reduced set of electrodes in-
creased the core consistency to 87% indicating good fit 
of the model to data. This is in contrast when the full set 
of electrodes was used and the core consistency value be-
low 20% indicated poor fit. Similar three atoms to the 
ones plotted in Figure 4 were observed in Participant K, 
however, using the full set of electrodes. While two at-

oms resemble Atoms 1 and 3 in Figure 4, the third ex-
tracted atom in this participant resemble the movement 
atom depicted in Figure 2. This atom was spatially con-
centrated on Fp1, Fp2, F8 and T4 electrode sites. Re-
moval of these sites and also additional to noise suscep-
tible sites (F3, F4, F7, F8, T3, T5 and T6) did not change 
the structure of the extracted atoms, indicating that the 
observed movement related artifact globally influences 
EEG recordings at all sites. 

4. CONCLUSIONS 

This study has proven to be an extremely fruitful and 
penetrating view of an entirely new approach to multi-
dimensional analysis of experiments in which EEG is 
used to detect changes in mental states. The results speak 
conclusively to the fact the atomic decomposition pro-
vides a novel view and powerful insight concerning the 
interactions of brain regions and oscillatory EEG sources 
as they change with mental states. Although the results 
are impressive, we feel that this project has barely 
scratched the surface of the potential for application of 
atomic decomposition to EEG. 

Additional results have been obtained using atomic de-
composition of coherence in mental workload and cogni-
tive fatigue. The results with coherence measures proved 
to be more consistent across subjects and interpretable 
for workload assessment. A detailed description of these 
results is beyond the scope of this report, but will be pre-
sented in the corresponding conference poster. Copies of 
the poster presentation may be obtained in the future 
from the author. 

Of most importance to the US Army and its need to ac-
curately assess operator functional states, the methods 
we have developed here should be extended in two im-
portant directions. First, as with our prior work using 
PLS and linear or nonlinear classifiers, we must use 
atomic decomposition to extract features of EEG that 
serve as inputs to classifiers of mental states.  Our ex-
perience with such classification work and testing will 
allow us to rapidly develop these methods and apply 
them to the existing data sets with minimal effort.  Sec-
ondly, as atomic decomposition is relatively new in the 
analysis of EEG, we must design specific experiments 
that will allow us to test hypotheses concerning the valid-
ity and utility of the method in controlled studies.  

For this to succeed we will seek partnerships with ex-
perimental groups and add our methodology to ongoing 
and planned experiments, to be as efficient as possible in 
the early development of the methodology. Should 
atomic decomposition methods prove generally valid and 
useful in EEG applications, we will aim to publish the 
fundamental advances in academic journals and distrib-
ute the underlying software technology through commer-
cial avenues. 
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