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1 
Abstract: This paper describes the use of multi-way decomposition methods to efficiently summarize 
electroencephalographic (EEG) data. A space-frequency-time atomic decomposition was applied to EEG 
data recorded while subjects performed tasks associated with varying levels of cognitive performance. The 
new atomic decomposition of cognitive workload data revealed alpha and theta EEG oscillations which 
agree with observations reported in the brain research literature. The temporal signature of the atoms 
discriminates between different levels of cognitive activity. The results and analysis confirm the utility of 
the multi-way decomposition method to construct new models and algorithms for monitoring cognitive 
status, which can supplement or overcome existing approaches based on conventional two-dimensional 
space-time or frequency-time data decomposition. 
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1 Introduction  

Accurate and timely estimation and classification of operator functional state has important practical 
consequences in many safety-critical operational situations. Impairment of cognitive performance in subjects during 
a safety-critical task poses a high risk for procedural errors, often leading to severe consequences with high economic 
or life losses. Cognitive impairment has been documented in different operational situations, and attributed to several 
factors, including time on duty, sleep loss, extended time on single tasks, unusually high mental workload, 
psychosocial stress, exposure to neurotoxins and vestibular dysfunction.  

Despite the extensive prior efforts to develop physiological methods for monitoring arousal and cognition, 
methods for monitoring mental workload are still unreliable. EEGs are considered to be the gold standard for 
objective detection of mental status and cognitive function and currently may be recorded and analyzed in almost any 
occupational setting. However, EEGs are usually recorded as a high-dimensional in time-space distributed data and 
many conventional 2-D decomposition techniques (for example, principal component analysis (PCA) or independent 
component analysis, Hyvärinen et al., 2001) may not be ideally suited to reveal the existing latent data structure, 
because unfolding 2-D decompositions can be done in several ways, and interactions of dimensions are not modeled 
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well in 2-D decompositions. Recently, promising results were achieved by applying multi-way decomposition 
models such as PARAFAC or TUCKER3 to EEG data (Estienne et al., 2001; Miwakeichi et al., 2004). Using these 
multi-way decomposition models we analyzed EEG data recorded from participants in a study of mental workload. 
To our knowledge this is the first time that multi-way decomposition models have been applied to the problem of 
mental workload analysis and monitoring. 

2 Methods 

2.1 Data acquisition and preprocessing  

Two subjects were trained to stable performance on a simulated Unmanned Air Vehicle (UAV) task. The task 
consists of monitoring of the progress of four UAVs as they flew a preplanned mission. Each subject participated in 
three in time-separated sessions. Five channels of EEG (electrodes located at Fz, F7, Pz, T5 and O2 with a linked 
mastoid reference), ECG, vertical and horizontal EOG were recorded. In this study only the EEG data were used. The 
EEG data were sampled at 200 Hz and low-pass filtered with cutoff of 30 Hz. Next, the data were segmented into 2-s 
long windows with an overlap of 500 ms. For each segment the power spectral density (PSD) was computed using 
the Thomson multitaper method (Thomson, 1982). Frequencies in the range of 2.5 to 20 Hz were considered in this 
study. Initial analyses revealed a high level of power at frequencies below 4 Hz. Power at these frequencies often 
arose from motion artifacts and confounded the PARAFAC analyses of EEG. For this reason only frequencies from 5 
to 20 Hz were considered for further analyses. This procedure was repeated for each EEG channel separately and a 
three-dimensional matrix X (I ×J ×K) with I time segments, J electrodes and PSD estimates at K frequencies was 
constructed. 

2.2 The PARAFAC model   

A three-way PARAFAC model was applied to data. PARAFAC can be seen as a generalization of PCA for 
dealing with multi-dimensional data (Bro, 1997). Three loading matrices, A, B, and C with elements aif, bjf, and ckf 
defines the model that can be mathematically described as  
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where εijk are the residual elements or errors and F stands for number of components or atoms that are 
considered. The loadings elements are then found by minimizing the sum of squares of the residuals εijk (Bro, 1997), 
that is  
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For the analyses reported here we used proprietary m-codes developed by Pacific Development and Technology, 
LLC, and subroutines from the N-way toolbox for Matlab® (Andersson and Bro, 2000).  

3 Results 

A three-atom PARAFAC model was observed to provide acceptable and physiologically interpretable results for 
EEG recordings of both subjects, for which core consistency diagnostic values, which index the stability of the 
decompositions, reached 87% and 97%, respectively (Bro and Kiers, 2003; Andersson and Bro, 2000).  

Three distinct spectral signature atoms (components) were observed in the first subject (Figure 1, right). Atom 1 
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exhibits a typical background EEG spectrum with relatively high power in the bands 5-7 Hz and 9-12 Hz. Atom 2 is 
somewhat concentrated in the alpha band (7.5-11 Hz). Atom 3 forms a contrast between the theta (5-7 Hz) and alpha 
(10-12 Hz) bands. These two rhythms have been shown to be key indicators of cognitive processes, such as attention, 
executive control, and working memory (Klimesch, 1999). These spectral atoms are not simply measures of spectral 
power because they can have both positive and negative loading values. This is in accordance with the physiological 
results where coupled increases in alpha band power and decreases in theta band power, and vice-versa, are often be 
observed during cognitive and memory performance tasks (Klimesch, 1999).  

Inspection of the spatial atoms (not plotted here) showed high loadings corresponding to Atoms 1 across 
electrodes Oz, Pz, and Fz. Atom 2 loadings showed a clear maximum at Pz, indicating an association with the alpha 
rhythm. Atom 3 loadings were maximal at Fz and Pz, indicating an association with the theta rhythm. The loadings 
for the remaining two electrodes (T5, F7) were small for all three atoms suggesting a weak influence of these brain 
regions on EEG variance on this task. The temporal signatures of the three atoms (Figure 1, left) and the sum of 
Atoms 2 and 3 are also plotted in Figure 1. These temporal signatures of the EEG decomposition reflect the EEG 
variance in mental workload as indexed by task demands and complexity. The NASA TLX scales (Hart and 
Staveland, 1988) were used to define three levels of workload. Peaks in the sum of the time loadings clearly reflect 
the highest (dark gray areas) and lower (light gray areas) mental workload states. Although the loadings fluctuated 
over time, rest periods were often followed by marked increases of the loadings in tandem with the low-and high 
workload conditions.  

 

Figure 1  Loadings of the three PARAFAC atoms extracted from EEG recordings of Subject 1. Left panel: Temporal signatures of the 

EEG atoms. Light bars mark periods of low mental workload; dark gray barks mark periods of high workload conditions, as defined by 

task demands. Vertical dotted lines separate three distinct experimental sessions. Bottom panel: The summed temporal loadings of Atoms 

1, 2, 3. Right panel: Spectral signatures corresponding to the atoms numbered in the left panel. 

Three distinct atoms were also extracted from the matrix of EEG recordings of the second subject. As for the 
first subject, the spectral loadings for Atom 1 reflected background EEG power with high loadings in the bands 5-5.5 
Hz and 9.5-14 Hz (Figure 2). Unlike the results for Subject 1 no clear alpha-like atom appears in the results for 
Subject 2. There is a slight concentration of high loadings between 10 and 14 Hz for Atom 1, which could include the 
variance of the alpha rhythm. The range of high loadings for Atom 1 decays too smoothly to serve as an indicator of 
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any specific rhythm or band, and most likely reflects background EEG. Atom 2 shows a concentration of high 
loadings for frequencies in the theta band. Loadings for Atom 3 were maximal in the band 5-9.5 Hz. The spatial 
loadings of Atom 1 were the same as for Subject 1 (Fz, Pz, Oz), whereas those of Atom 2 were maximal at Fz, 
indicating an association with theta rhythm. The spatial loadings of Atom 3 were maximal at Fz and Pz, also 
indicating association with theta and low alpha rhythms. The temporal loadings of Atoms 1 and 2 did not show a 
marked relationship to workload conditions; however, the temporal loadings of Atom 3 tracked closely with the 
various mental workload conditions and rest periods. 

 

Figure 2  Subject 2. Left panel: Temporal signatures of the EEG decomposition. Light gray areas mark lower mental workload states 

while the higher workload states are marked by the dark gray areas. Vertical dotted lines separate three in time distinct experimental 

sessions. Bottom panel: The third temporal atom alone. Right panel: Spectral signatures corresponding to temporal  

atoms plotted in the left panel. 

4 Conclusions 

The results of this study show that mental workload may be tracked by EEG components isolated using parallel 
factor analysis or PARAFAC. Components or atoms of the PARAFAC decomposition had high loadings in the 
frequency spectrum and across electrodes, which reflected alpha, theta, and broad-band EEG processes. Unlike other 
approaches to isolate EEG factors related to mental workload, our application of PARAFAC begins with a truly 
three-dimensional model of EEG variance observed during performance of a cognitive task. This model is fit to the 
EEG simultaneously in frequency, space, and time. The time dimension in the present study reflects imposed task 
demands that produced calibrated states of low-or high mental workload. 

For an unsupervised method of decomposition, these PARAFAC results are remarkable. Using a small number 
of electrodes, the loadings of several PARAFAC atoms in time, co-varied with task demands and mental workload. 
Admittedly, these results are based on a small sample of two subjects. However, the task performances were long, 
providing about 30 minutes of EEG recordings for analysis. In our extensive experience with similar experiments, 
the discovery of EEG atoms that track workload and have meaningful spectral and spatial propertied from recordings 
of these durations is not likely to arise from chance. 
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We are extending our research in two directions. First we are increasing the number of tasks and subjects in 
which we are applying the PARAFAC method. Two additional studies are in process, including a cognitive fatigue 
study and a warfare simulation task. Second, we are now testing a fourth dimension in the PARAFAC model: 
coherence of EEG sources. Short-and long range coherence of alpha and theta sources are expected to increase with 
cognitive effort, based on theoretical studies of EEG dynamics and considerable experimental data (Nunez and 
Srinivasan, 2005). We expect models that can encompass the direction, bandwidth, and extent of EEG coherence will 
help to further define neural sources that interact in cognition. 
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